专栏名称: 算法与数学之美
从生活中挖掘数学之美,在实践中体验算法之奇,魅力旅程,从此开始!
目录
相关文章推荐
算法爱好者  ·  OpenAI 和尤雨溪都觉得 Rust 真香! ·  昨天  
算法与数据结构  ·  “把 if 往上提,for 往下放!” ·  4 天前  
九章算法  ·  「九点热评」Meta员工:没活干就焦虑! ·  2 天前  
51好读  ›  专栏  ›  算法与数学之美

概率漫谈

算法与数学之美  · 公众号  · 算法  · 2016-12-12 22:29

正文

请到「今天看啥」查看全文


那么P(H) 是什么呢?如果P(H)等于零,那么P(S) = 0;如果P(H) > 0,那么P(S) = 无穷大。无论如何,都和P(S) = 1的要求矛盾。这下麻烦大了,我们一直依赖的概率定义竟然是自相矛盾的!

也许,从数学家的眼光看来,这个问题很严重。但是,这对于我们有什么意义呢。我们一辈子都用不着这种只存在于数学思辨中的特殊构造的集合!不过,即使我们从实用出发不顾及这类逻辑漏洞,传统概率论还是会给我们带来一定程度的麻烦。

一个问题,可能大家都有所感觉。那就是,我们在本科学习的概率论中有着两套系统:离散分布和连续分布,基本什么定理都得提供这两种形式,但是它们的推导过程似乎没什么太大差别,一个用求和一个用积分而已。几乎一样的事情,为什么要干两遍呢。

还有,那种离散和连续混合的分布又怎么处理呢?这种“离散连续混合的分布”不仅仅是一种理论可能,在实际上它的应用也在不断增长。一个重要的例子就是狄里克莱过程(Dirichlet Process)——它是learning中的无限混合模型的核心——这种模型用于解决传统有限混合模型中(比如GMM)子模型个数不确定的难题。这种过程,在开始时(t = 0)通常是连续分布, 随着时间演化,在t > 0时变成连续和离散混合分布,而且离散部分比例不断加重,最后(几乎必然)收敛到一个离散分布。这种模型用传统的连续和离散分离的处理方式就显得很不方便了。

事实上,我们是可以把对连续模型,离散模型,以及各种既不连续也不离散的模型,使用一种统一的表达。这就是现代概率论采取的方式。

现代概率论——从测度开始







请到「今天看啥」查看全文