专栏名称: 算法与数学之美
从生活中挖掘数学之美,在实践中体验算法之奇,魅力旅程,从此开始!
目录
相关文章推荐
九章算法  ·  「九点热评」亚麻员工休假要被扣钱! ·  昨天  
算法爱好者  ·  苹果设计炸了!Liquid Glass ... ·  2 天前  
九章算法  ·  谷歌面试给面试官整笑了! ·  2 天前  
九章算法  ·  7月绿卡排期发布!EB-1终将凉凉! ·  2 天前  
51好读  ›  专栏  ›  算法与数学之美

0.00...1是个什么数?

算法与数学之美  · 公众号  · 算法  · 2017-01-14 22:49

正文

请到「今天看啥」查看全文



这种关于无限小数的想法当然是错误的。回忆一下在实数系中引进无限循环小数的目的和依据:有理数在实数中稠密(即处处都有,任何一个小区间里都有有理数), 又在有理数中稠密,因此它在实数集中也稠密。因此我们可以用一个m/10^n形式有理数的数列去逼近任何的实数。因此我们的无限小数作为{m /10^n}数列的完成式,在小数点后面跟着的就是个由0-9数字组成的数列,它的每一项都跟自然数有一一对应的关系,而自然数根本就没有最后一项。可见,0.99...是无法写成0.99...9的。


那么,0.00...1是个什么数?

首先指出,它既不是有限小数,也不是我们平常所见的无限小数,因此它根本不是一个实数。

它不是个有限小数,这是显然的,因为小数点后面有无穷个0。那它为什么不是无限小数呢?前面已经说过,任何一个无限小数,后面的小数位按从左到右的顺序与自然数一一对应,任何一个小数位都对应一个有限的自然数。反观0.0...1,最后的那个1,不对应任何有限的自然数,前面的无限多个0就已经把所有自然数都对应完了。从小数运算规律来看的话,如果要把0.0...1与0.99...相加,那么0.99...中所有的9都与0.0...1中的0对应相加,0.0...1最后的那个1要加在哪一位呢?如果按无限小数对应实数的规则把它放在实数轴上,它要放在哪里呢?它非负,又小于所有形如 1/10^n的数,这样的数只有0。因此前面的无限多个0就已经决定了它只能是0了,后面的1对它的值来讲没有意义,没有存在的必要。


虽然在实数的范围内它是没有必要存在的表达式,但我们依然有必要从形式上讨论它,因为现在的数系发展早已经超越了实数,从一维的实数扩展到高维的复数、四元数等;从标准的实数扩展到了非标准的超实数、广义实数等。所以数的范围在扩大,概念并不唯一。在其它数系中是否可能有它的身影呢?我们最好先看看这个数的特征。


因为小数点后面的0的个数已经是无限的了,这些0占满了所有以自然数为标号的小数位,然后在这些无穷多个0后面紧接着又出现了一个1,已经超出了以自然数为下标的数列的研究范围。对于这个形式上的“数”,仅有自然数的知识就不够了,需要把自然数向无穷情形做一种推广。回想上一节的无穷基数的理论,它就是从“ 个数”角度把自然数推广到了无穷的情形,但对于我们的问题,光是讨论小数位的个数是不行的,因为我们说过,在可数无穷多个元素基础上增加一个元素,元素个数没什么改变,仍然是可数无穷,你很容易把最后添加的那个1对应自然数的第一个元素,然后把原来的每个对应位都向后移动一位,所有元素仍然是一一对应于自然数集的。







请到「今天看啥」查看全文