正文
,其中的神经元被称为输入神经元(input neurons)。最右边的一层是
输出层
(output layer),包含的神经元被称为输出神经元(output neurons)。网络中间的一层被称作
隐层
(hidden layer),在一些网络中往往有多个隐层。我们可以看到,输入向量连到许多神经元上,这些神经元的输出又连到一堆神经元上,这一过程可以重复很多次。数值向量在不同神经元之间传导。
但是,我们刚刚分析了神经元,神经元的变换是完全的线形的,如果神经网络的每层都只是做线性变换,多层输入叠加后也还是线性变换。因为线性模型的表达能力不够,所以需要激活函数来引入非线性因素。举个栗子,常用的激活函数sigmoid
函数,可以将实数压缩到[0,1]之间。激活函数是神经网络强大的基础,好的激活函数(根据任务来选择)还可以加速训练。
接下来,确定了神经网络的连接方式、网络的层数、每层的节点数,建好网络模型之后,我们要开始学习这个神经网络的每个连接上的权值了。
训练网络(training)
训练过程就是用训练数据的input经过网络计算出output,再和label计算出loss,再计算出gradients来更新weights的过程。label就是训练集里预先加上的分类标记,loss就是你算出的结果与正确结果(正确为1,错误为0)的误差,或者叫损失。
那么training其实就是通过梯度下降法尽可能缩小loss的过程。如下图所示,我们希望loss值可以降低到右侧深蓝色的最低点。
具体步骤如下:
-
正向传递:算当前网络的预测值 (Relu是一种激活函数,Wh1、Wh2、W0是权重,b是偏移量)
-
计算loss:
-
计算梯度:从loss开始反向传播计算每个参数(parameters)对应的梯度(gradients)。这里用Stochastic Gradient Descent (SGD) 来计算梯度,即每次更新所计算的梯度都是从一个样本计算出来的。
-
更新权重:这里用最简单的方法来更新,即所有参数都
-
预测新值:训练过所有样本后,打乱样本顺序再次训练若干次。训练完毕后,当再来新的数据input,就可以利用训练的网络来预测了。这时的output就是效果很好的预测值了。
PS 以上理论知识和公式来自斯坦福大学计算机视觉实验室推出的课程CS231n: Convolutional Neural Networks for Visual Recognition
调戏Tensorflow Playground
接下来,摩拳擦掌想要试一试深度学习的朋友们可以试着调戏一下TensorFlow Playground。TensorFlow游乐场是一个通过网页浏览器就可以训练的简单神经网络,并实现了可视化训练过程的工具。下图就是TensorFlow游乐场默认设置的截图。