专栏名称: 医学影像云
《医学影像云》公众号(yxyxjs)平台,旨在为同道提供医学影像领域的资讯信息、学术思想、前沿科技、发展趋势等学习和交流切磋的平台。望各位医学同道在本平台得己所需,共同进步!
目录
相关文章推荐
51好读  ›  专栏  ›  医学影像云

由围棋转战到肺癌筛查,人工智能真的无往不利?

医学影像云  · 公众号  · 医学  · 2017-06-27 17:35

正文

请到「今天看啥」查看全文



首先,人工智能(AI)本身并非其代言明星如“阿尔法狗”(AlphaGo)一般的新兴概念,搜索考据一番即可。


▵图片来源:BBC中文网


事实上,人工智能在医学领域的尤其是医学影像学中应用早已有之,只是赋以另外的名称,叫做计算机辅助诊断,(Computer Aided Diagnosis/Detection,简称CAD)或者中文的计算机辅助诊断——这个就有点好比原先我们小时候吃的樱桃现在主流称呼变成了车厘子(Cherry)一样。 而可以代表目前CAD在医学乃至医学影像学中的最高水平的应用,是近段时间国内特别热门的肺结节检测,以及乳腺病变的辅助诊断。两者都不是新事物,国外商业化应用早就集中在这两个领域,美国FDA对此也有专门的规范。


CAD之所以特别着力于乳腺和肺部结节,并非因为二者高居女性恶性肿瘤排行榜前两位(男性为肺癌和前列腺癌,后者的CAD也在开发中),而是由于两者的病变影像学特点和目前的人工智能技术能够有效对接。


简单来说,肺结节(白色)和背景的肺组织(充满空气,黑色)对比强烈,乳腺x光片中需要寻找的钙化灶(亮白色)同背景乳腺组织尤其是筛查年龄段中逐渐增多的乳腺脂肪(灰白色至黑色)组织也有显著密度差别,这一差别使得CAD有了用武之地,打个不恰当的比方,就好比棋盘之上让“阿尔法狗”从一堆黑白棋子中选出白棋,当然,实际情况会复杂很多。


现代西方医学的一个重要基础是循证医学。而循证医学最核心的方法学是流行病学、临床流行病学、统计学、卫生经济学、计算机科学等的集合。循证医学是现代医学的一个里程碑,标志着临床医学实践从经验走向理性,其核心是要告诉临床研究者和实践者如何做才更科学。而CAD在临床的应用,同样也要遵循这一基础。


简单举例来说,假如一个普通人被告知他有12.5%的几率患某种肿瘤,这12.5%也应该被解释为他同样有87.5%的几率不患这类疾病,这就是医学的严谨性,也是医学之所以“复杂”的专业性。


因此,对“人工智能产品查出肺癌的准确率达63%,排除肺癌的准确率达78%”而言,我们同样应该告知患者的是:这一人工智能产品查出肺癌的失误率有37%,排除肺癌的失误率有22%。







请到「今天看啥」查看全文