专栏名称: 互联网思想
传播互联网及科技思潮,分享互联网观点,学习互联网思维,提升互联网精神,升华互联网思想!
目录
相关文章推荐
51好读  ›  专栏  ›  互联网思想

《纽约客》深度长文:当人工智能遇上医生

互联网思想  · 公众号  · 科技媒体  · 2017-04-06 19:09

正文

请到「今天看啥」查看全文



对咳嗽的分类会立即缩小诊断的可能性。 他可能会说,“听起来好像是一种肺炎”,或者说是“充血性心力衰竭的湿疹”。接着,他会问一大堆问题。病人最近体重是否增加?有没有接触石棉?他会要求病人再次咳嗽,俯身用听诊器仔细聆听。根据回答,他可能会判断另外的可能性。 然后,他会像路边魔术师那样突然宣布诊断结果“心力衰竭!”——并开出检验单来验证。结果通常都没错。


几年前,巴西的研究人员研究了放射科专家的大脑,以了解他们如何做出诊断。 这些经验丰富的诊断医师到底是用精神的“规则手册”,还是“模式识别或非分析推理”对图像进行识别?


参加实验的25名放射科医生被要求观看肺部X射线片子,MRI用来跟踪他们大脑的活动。X射线图像在他们之前闪过。一组图像包含常见的单一病理损伤,可能是肺部的棕榈状阴影,或者积聚在肺内衬层后面的沉闷,不透明的流体壁。第二组图像是动物线条图; 第三组是字母轮廓。三种类型的图像随机展示,放射科医生需要尽快说出病灶,动物或字母的名称,而MRI机器追踪他们大脑的活动。放射科医生平均需要1.33秒才能做出诊断。 在所有三种情况下,大脑相同的区域亮起:左耳附近的神经元宽三角洲,还有颅骨后基上方的蛾形带。


研究人员最后总结: 当医生识别出某种特征或以前已知的病变时,大脑过程与识别日常生活的事物相似。识别病变类似于识别动物的过程。当你认识犀牛时,你不会考虑其他动物。 你也不会认为是独角兽,穿山甲和小象组成的动物。你是从整体认知犀牛的——作为一种模式。 放射科医生也是如此。他们没有经过沉思,回忆,区分,而是看到一个普通的东西。 我的老师也一样,那些湿漉漉的声音也像一个熟悉的叮当声一样被认出。


—3—


1945年,英国哲学家Gilbert Ryle先生做了一场很有影响力的报告,关于两种知识类型。一个孩子知道自行车有两个轮子,它的轮胎充满了空气,踩着脚踏板转圈车子会向前走。 Ryle先生将这种知识称为事实的、命题的类别—— 即“知道是什么”。但是学习骑自行车涉及另一个学习领域。 一个孩子通过摔跤,在两轮上平衡,走坑洼路而学会骑车。Ryle先生将这种知识成为隐含的,体验式的,基于技能的—— 即“知道怎么做”。


英国哲学家Gilbert Ryle先生( 图片来源: philosophybasics)


这两种知识似乎是相互依赖的:你可以使用事实知识来深化你的体验知识,反之亦然。但是,Ryle先生也提出, 不能从“知道是什么”简单推导出“知道怎么做”,正如一本教导手册无法教会孩子骑自行车。 他说,只有当我们知道怎么运用规则时,规则才有意义:“规则就像鸟儿一样,在做成标本之前必须活着。”一天下午,我看着7岁的女儿骑着自行车越过一座小坡。她第一次在斜坡最陡峭的地方摔了下来。第二次,我看到她稍微向前倾斜,然后更加倾斜,她不断根据斜坡的减缓调整身体重量在座位上的分布。但是我并没有教过她骑车上坡的规则。我认为她也不会教她的女儿骑车上坡的规则。 我们教给大脑一些常识,让它自己去解决剩下的问题。


在参加Lignelli-Dipple博士给放射科学员的培训之后,我和Steffen Haider先生谈过,他就是那个在CT片子上发现早期卒中的年轻人。他是怎么发现病变的?是“知道是那样”还是“知道怎么做”?他开始告诉我有关学习的规则——中风往往是单边的,它们导致组织微妙的“变灰”, 组织常表现出微肿,造成解剖边界的模糊。他说:“大脑中有供血特别脆弱的地方。为了识别病变,他必须在单侧脑室搜索跟另一侧不一样的地方。


我提醒他,有很多不对称的影像他都忽略了。事实上大多数CT片子上都会有很多只出现在单侧脑室的阴影,他是怎么把注意力缩小到那个正确的部位?他停下来想了很久回答,“我不知道,有些潜意识的感觉。”


他的老师Lignelli-Dipple博士告诉我, “这就是放射科医生的成长和学习”。问题是,机器能否以同样的方式“成长和学习”?


—4—


2015年1月,计算机科学家Sebastian Thrun博士对医学诊断的难题感兴趣。Thrun博士在德国长大,精瘦的,剃着光头,有一种喜感,看起来像Michel Foucault(法国哲学家)先生和憨豆先生的组合。他曾是斯坦福大学(Stanford University)教授,研究方向是人工智能;随后去了Google公司,在那里发起了Google X项目,从事自学机器人和无人驾驶汽车的研究工作。后来,他的兴趣又转向医学中的机器学习。其母49岁死于乳腺癌。现在Thrun博士也正好49岁。 他谈到“大多数癌症患者是没有症状的,我妈妈就是这样。当她去看医生时,癌症已经转移了。所以,我很想在还可以进行手术的早期阶段发现癌症。我一直在想,机器学习算法能做到吗?”


计算机科学家 Sebastian Thrun博士 图片来源: 斯坦福大学官网)


自动化诊断的早期研究是让机器学习教科书的显性知识。 在过去20年中,电脑解读是自动化诊断的一大特点,解决方案往往比较简单。比如记录心电图,这是一种在纸或屏幕上显示心脏活动的线条。 心电图的特征波形与各种疾病相关——心房颤动或血管阻塞。将识别波形的规则输入到应用中,当机器识别波形时,就给这部分心跳标记,例如“心房颤动”。


在乳腺X线照相术中,“计算机辅助检测”也很常见。模式识别软件突出显示可疑部位,放射科医师审查结果。 但是,识别软件依然是典型地使用基于规则的系统来识别可疑病变。这样的程序没有内置的学习机制,一台已经看过3000张X光片的机器并不比仅仅看过4张的更聪明。 2007年的一项研究比较了采用计算机辅助诊断前后乳房X线照相术的准确性。人们可能觉得在加入计算机之后,诊断的准确性会显著增加。 事实是,虽然计算机辅助组的活检比例迅速上升,但是肿瘤学家最希望发现的小的浸润性乳腺癌比例,反而减少了。后来还发现假阳性的问题。


Thrun博士相信他可以超越这些第一代诊断设备,将它们从基于规则的算法转变为基于学习的算法来——从“知道怎么做”而不是“知道是什么”来做出诊断结论。跟Thrun博士类似的学习算法越来越多地采用了“神经网络”的计算策略,因为它们的设计灵感来自于大脑功能模型。 在大脑中,神经突触通过反复激活得到加强或减弱,这些算法也希望采用数学手段实现类似的认知方式,不断调整判断依据的“权重”,使输出结果逐渐走向准确。另一种更强大学习算法则类似大脑神经元层,每层处理输入数据并将结果发送到下一层。因此,也被称为“深度学习”。








请到「今天看啥」查看全文