正文
我们能做什么呢?可以尝试从原图像中提取特征,从而保留空间排列。
案例 1
这里我们使用一个权重乘以初始像素值。
现在裸眼识别出这是「4」就变得更简单了。但把它交给全连接网络之前,还需要平整化(flatten) 它,要让我们能够保留图像的空间排列。
案例 2
现在我们可以看到,把图像平整化完全破坏了它的排列。我们需要想出一种方式在没有平整化的情况下把图片馈送给网络,并且还要保留空间排列特征,也就是需要馈送像素值的 2D/3D 排列。
我们可以尝试一次采用图像的两个像素值,而非一个。这能给网络很好的洞见,观察邻近像素的特征。既然一次采用两个像素,那也就需要一次采用两个权重值了
希望你能注意到图像从之前的 4 列数值变成了 3 列。因为我们现在一次移用两个像素(在每次移动中像素被共享),图像变的更小了。虽然图像变小了,我们仍能在很大程度上理解这是「4」。而且,要意识到的一个重点是,我们采用的是两个连贯的水平像素,因此只会考虑水平的排列。
这是我们从图像中提取特征的一种方式。我们可以看到左边和中间部分,但右边部分看起来不那么清楚。主要是因为两个问题:
1. 图片角落左边和右边是权重相乘一次得到的。
2. 左边仍旧保留,因为权重值高;右边因为略低的权重,有些丢失。
现在我们有两个问题,需要两个解决方案。
案例 3
遇到的问题是图像左右两角只被权重通过一次。我们需要做的是让网络像考虑其他像素一样考虑角落。我们有一个简单的方法解决这一问题:把零放在权重运动的两边。
你可以看到通过添加零,来自角落的信息被再训练。图像也变得更大。这可被用于我们不想要缩小图像的情况下。
案例 4
这里我们试图解决的问题是右侧角落更小的权重值正在降低像素值,因此使其难以被我们识别。我们所能做的是采取多个权重值并将其结合起来。
(1,0.3) 的权重值给了我们一个输出表格
同时表格 (0.1,5) 的权重值也将给我们一个输出表格。
两张图像的结合版本将会给我们一个清晰的图片。因此,我们所做的是简单地使用多个权重而不是一个,从而再训练图像的更多信息。最终结果将是上述两张图像的一个结合版本。