专栏名称: 经济观察报观察家
让思想激荡,开风气之先
目录
相关文章推荐
ThinkingSlow缓慢思考  ·  神奇的十年 ·  3 周前  
51好读  ›  专栏  ›  经济观察报观察家

人工智能:半个世纪的思想运动——基于图灵机、MP模型和计算主义的历史考察

经济观察报观察家  · 公众号  ·  · 2024-07-17 19:00

正文

请到「今天看啥」查看全文




图灵是人工智能核心思想的提出者。时间是89年前的1935年。那年初夏,图灵开始思考被后人称之为“图灵机”的“自动机器”,至1936年4月,图灵完成《论可计算数,及其在判定问题中的应用》(On Computable Numbers,with an Application to the Entscheidungsproblem)论文。从本质上说,图灵机是一种抽象的计算机模型,通过一个虚拟机器替代人类进行数学运算,也就是通过一个机器替代“计算者”,实现在任何可计算的范畴内的计算问题。图灵机对于人工智能科学和计算机科学,具有同等重要的作用,因为两者是不可分割的:计算机科学的尽头是人工智能,人工智能的载体是计算机。


深入解析图灵机,其深层结构则是数学。而相关数学的核心问题就是如何认知希尔伯特(David Hilbert,1862—1943)的“可判定性”(Entscheidungsproblem)。可判定性是指一个问题是否可以通过某种算法在有限时间内得到解决。图灵对于可计算性问题,有双重立场:一方面,他证明了希尔伯特的判定性问题无解,另一方面,他将可计算性问题转化为一个直观可计算(有效可计算)的函数。


著名的“丘奇—图灵论题”(Church-Turing thesis),可以有几种表述方式:所有计算装置都与图灵机等价;人按照算法执行的计算和图灵机等价;人的智能和图灵机的能力等价。也就是说:“丘奇—图灵论题”,可以证明图灵机与可计算性的连接,证明图灵机可以实现某种算法在有限时间内得到解决。图灵机可以定义为一种计算的和模拟算法逻辑的数学模型。“图灵机的出现是对人类计算分析的结果,是一种编码”。


问题并没有到此结束,最终还是要回答图灵机的第一推动力是什么?是决定论。


1951年,阿兰·图灵(站立者)和同事在费伦蒂马克一号(Ferranti Mark Ⅰ)电脑前工作   CFP/供图


根据安德鲁·霍奇斯(Andrew Philip Hodges)撰写的《图灵传》:“显然,图灵机,与他早期对拉普拉斯决定论的一些思考,是有关系的。”图灵通过图灵机,“创作了他自己的决定论,在一个逻辑的框架中,来讨论思维是什么”。在创造图灵机的过程中,“他发现了一些有点像超自然的东西”。图灵“证明了任何人类计算者的工作,都可以由机器做到”。图灵机在图灵那里,自始至终是存在神秘色彩的。


所以,到了1950年,图灵的《计算机器与智能》(Computing Machinery and Intelligence)问世。图灵在这篇人工智能历史上开天辟地的文章中,一上来就提问:“机器能够思维吗?”为此要避免对“思维”有预设的定义。之后,图灵提出并阐述了“模仿游戏”(imitation game)的思想实验,即奠定了人工智能的理论基础“图灵测试”。他“通过适当的增加存储和计算速度,并提供合适的编程,一个数字计算机可以表现得像人类么”?图灵对于未来机器充满信心,机器的发展会创造太多的出乎意料,学习机器可以在任何方面与人类的能力匹敌。而人们之所以不相信,“起因于哲学家和数学家们特别容易持有的一个谬见”。事实上,图灵的这篇文章更具有哲学意味,他在字里行间,已经将对机器可以思考作为了一种观念,赋予其一种基于科学论证的信仰。


无论如何,至少从1936年到1950年间的图灵是一以贯之的,他以形而上的模式持续其人工智能思考。这个时期,也正是“形而上”主导人工智能的关键历史阶段。



1943年,麦卡洛克(Warren Sturgis McCulloch)和皮茨(Walter Harry Pitts)共同发表了《神经活动内在概念的逻辑演算》(A Logical Calculus of the Ideas Immanent in Nervous Activity)一文,创造了麦卡洛克—匹兹模型(McCulloch-Pitts model),简称MP模型,这是第一次模仿生物神经元的树突、轴突、细胞核制作出了人工神经元模型。


MP模型的基础理论是“理论神经生理学”。该理论建立以如下的基本假定为前提:“神经系统上一个神经元网,每个神经元都有一个细胞体和一个轴突。它们的附属部分,或称突触,总是位于一个神经元的轴突和另一个神经元的细胞体之间。神经元任何时刻都有某个阀值,刺激必须超过这个值才能发起一个冲动”,“这个冲动从刺激点传播到神经元的所有部分”。基于这样的理论前提,MP模型证明了:“一定类型的(可严格定义的)神经网络,原则上能够计算一定的逻辑函数。”







请到「今天看啥」查看全文