正文
概述:如果忒修斯的船上的木头被逐渐替换,直到所有的木头都不是原来的木头,这艘船还是原来的那艘船吗?
基于同一性的古希腊著名悖论,引发了赫拉克利特、苏格拉斯、柏拉图等的各种讨论。近代启蒙运动中,英国的两位大哲学家托马斯·霍布斯(Thomas Hobbes)、约翰·洛克(John Locke)也曾尝试解答这个问题。答案始终是是非非,难以一锤定音。
脑洞:人体细胞每七年更新一次,七年后,镜子里是另一个你。
【5】上帝无所不能?
概述:无所不能的上帝,能不能创造出他自己搬不动的石头?
关于上帝无所不能的逻辑悖论不胜枚举。教徒们有无数理由证明上帝的神圣,而在他们看来,这些悖论的理由根本无关紧要。
脑洞:装备此逻辑,与自称为上帝的自恋狂魔们大战几百回合不掉血。
【6】托里拆利小号(Gabriel's Horn)
概述:体积有限的物体,表面积却可以无限。
17世纪的几何悖论。意大利数学家托里拆利(Evangelista Torricelli)将y=1/x中x≥1的部分绕着x轴旋转了一圈,得到了上面的小号状图形(注:上图只显示了一部分图形)。然后他得出:这个小号的表面积无穷大,可体积却是 π。
脑洞:原来也有平胸不一定能为国家省布料的时候。
【7】理发师悖论(Russell's Paradox的别称)
概述:小城的理发师放出豪言:“我只帮城里所有不自己刮脸的人刮脸。”那么问题来了,理发师给自己刮脸么?如果他给自己刮脸,就违反了只帮不自己刮脸的人刮脸的承诺;如果他不给自己刮脸,就必须给自己刮脸,因为他的承诺说他只帮不自己刮脸的人刮脸。两种假设都说不通。
【宽客网络课堂】量化投资核心技术——入门篇
1.掌握金融行业和二级市场的基础业务常识
2.掌握量化交易系统搭建的技术基础要点
3.具备进一步学习更高级课程的认知基础
4.具备跨界融合能力的认知基础
报名电话/微信:18516600808