正文
原子力显微技术是判定是否是石墨烯的最好的表征方法,因为能够直接用它就能观察到石墨烯的表面形貌,同时还能测出此石墨烯的厚薄程度
,
然后再与单层的石墨烯的厚度进行对比,从而确定是否存在单层石墨烯。但是AFM也有缺点,就是它的效率很低。这是因为在石墨烯的表面常会有一些吸附物存在,这会使所测出的石墨烯的厚度会略大于它的实际厚度。
图 石墨烯的结构图和其AFM图像[a,b]
图中a显示的是单层的碳原子进行紧密排列而构成的二维的点阵结构; b显示的是石墨烯的AFM图像,扫描探针显微结构中,AFM可以直接观测到其表面形貌,并测出厚度,但是最大的缺点就是效率低,而且由于表面不纯净,常会有吸附物存在,导致测出的厚度要稍大于实际厚度。
Raman 方法是基于光通过样品时发生拉曼散射效应进行分析,能够通过分析样品拉曼光谱的频率,强度,峰位和半峰宽等对石墨烯材料的层数、缺陷、晶体结构、声子能带等进行表征。是石墨烯材料测试分析的重要手段。
下图为石墨和石墨烯的拉曼光谱,石墨烯的拉曼光谱中有两个主峰,G 峰在1 580 cm-1附近,反应薄膜的对称性,2D 峰在2 700 cm-1附近,为双声子共振拉曼峰。
G
峰对薄膜的应力影响比较敏感,能够有效反应出石墨烯薄膜的层数,随着层数的增加,G 峰会向左移动。2D 峰指双声子拉曼共振峰,为区域边界声子的二级拉曼散射峰,通常也会对石墨烯层数有直观反应,随着层数的增加,2D 峰会往右移动,峰的半高宽( FWHM) 也会增加。
图 石墨和石墨烯的激光拉曼图谱
石墨烯的拉曼光谱中通常会出现多个缺陷峰,
D 峰在1350 cm-1附近,被认为是石墨烯的无序振荡峰,D 峰和G 峰的比值表示了缺陷的密度, ID/IG 比值越大,说明缺陷密度越高。
D + D'峰在2 935 cm-1附近,D 峰与D'峰产生于谷间和谷内散射的过程,
两者的比值表示了缺陷的类型,ID /ID'比值约为13 时,表示缺陷类型为sp3 杂化缺陷; 当比值约为7 时,表示缺陷类型为空位缺陷; 当约为3. 5 时,表示缺陷类型为边缘缺陷。
红外光谱分析常被用来鉴定分子中某些官能团的存在。此外,这种技术的独特性在于它是吸收带的集合,有助于确认纯化合物的身份或检测特定杂质的存在。分析石墨烯时,它有助于石墨、氧化石墨烯、还原石墨烯和官能化的石墨烯的表征。
下图为某实验室使用氧化还原法制备石墨烯过程中采用不同用量水合肼制备出的石墨烯红外光谱图。
当水合肼用量为0. 05 ml 时,产物表面官能团变化较小。随着水合肼用量的增加,在2 930、2850cm-1位置附近CH2对称和反对称伸缩振动、1720cm-1位置附近的C = O振动和1264cm-1位置附近C—O—C振动引起的吸收峰逐渐减弱。当用量达到1 mL时,这些官能团振动引起的吸收峰基本消失,表示氧化石墨被完全还原,全部转化为石墨烯。
可见,该方法对石墨烯制备质量的表征具有一定的作用,能够为石墨烯制备工艺的改进提供一定的依据。
紫外-可见光光谱可用于石墨烯的定性分析。在石墨烯及其复合材料的制备过程中,将所得产物的紫外图谱与石墨烯或者其衍生物的紫外谱图相比较,即可判定所得产物是否为石墨烯或其衍生物。
据文献报道,氧化石墨(GO)水溶液在约230和300nm处有两个特征吸收峰,分别对应着芳香C—C键的跃迁和C —O键的跃迁; 而石墨烯(GN)的特征吸收峰在约270nm处, 对应于芳香C—C键的跃迁。据此,将相同测试条件下所得的未知产物紫外谱与GO或GN的谱图进行对比,即可判定产物是否为二者之一。
紫外-可见光光谱可以用于氧化石墨还原程度的鉴定和还原过程的监控。因为氧化石墨(GO)和石墨烯(GN)具有不同的紫外吸收特征峰,采用不同途径对GO进行还原的过程中,GO中的含氧基团不断被去除,石墨烯中原有的sp2结构逐渐恢复,产物的共轭性得到提高。体现在紫外谱上,随着还原的进行,约300nm的吸收峰逐渐减弱并最终消失,约230nm的吸收峰不断红移并靠近石墨烯在约270nm处的吸收峰,且整个谱带的吸收强度逐渐增加。
图 氧化石墨随还原时间变化的紫外谱图
X射线衍射是一个很重要的实验技术,一直以来被用来解决与固体的晶体结构相关的所有问题。X 射线衍射分析可用以了解原始石墨烯的结构。
石墨烯是石墨的绝缘原子平面。用X 射线衍射分析石墨烯相关材料显示出 2 个主要的峰,石墨在 27 度处呈现出特征峰,而氧化石墨烯的峰出现在 10 度左右,与氧化石墨烯的衍射峰一致(001)。石墨的衍射峰从 27 度到 10 度的位移意味着石墨烯层之间的距离增大;氧化应该在层间形成空间,在低角度的衍射峰表明大间距的存在。此外,在氧化石墨烯被还原时,在 10 度左右没有峰值的存在,且其之后的结构取决于被用作还原剂的物质
XPS是一种表面敏感技术,用于分析表面化学成分以及成分和成健的深度剖面。
陈Chen et al. (2011)在研究化学气相沉积生长的石墨烯薄膜保护金属生长基底表面的能力时(受空气氧化的铜和铜/镍合金的金属生长基底),通过X射线光电子能谱(XPS)显示即使在空气中以200℃的温度加热长达4小时后金属表面仍不受氧化。