专栏名称: 机器之心
专业的人工智能媒体和产业服务平台
目录
相关文章推荐
人工智能产业链union  ·  【AI加油站】第十四部:《LLM ... ·  昨天  
人工智能产业链union  ·  【AI加油站】第十四部:《LLM ... ·  昨天  
爱可可-爱生活  ·  晚安~ #晚安# -20250609224616 ·  2 天前  
新智元  ·  苹果炮轰AI推理遭打脸,GitHub大佬神怒 ... ·  2 天前  
51好读  ›  专栏  ›  机器之心

专访 | 网易有道 CEO 周枫:需求为先的 AI 技术赋能

机器之心  · 公众号  · AI  · 2017-07-11 12:28

正文

请到「今天看啥」查看全文



周枫先后于清华大学和加州大学伯克利分校取得计算机本科、硕士和博士学位。2005 年,还在博士就读阶段的周枫就负责了网易有道搜索的基础架构搭建。毕业正式加入网易后,周枫先后负责了账号保护器「将军令」、有道词典、有道购物助手(现惠惠购物助手)的开发。其中有道词典利用独创的「网络释义」功能,通过对互联网信息的深度挖掘对单词给出具有时效性的参考释义,获得了广泛好评,现用户量已超过 6 亿。本次活动结束后,机器之心和周枫聊了聊有道神经机器翻译的开发历程,以及深度学习为业界带来了哪些变化。


图:周枫在「网易有道开放日」现场


成立专门团队提前布局


从谷歌发布相关论文、切换系统开始,神经机器翻译「大火」还不到一年,而有道在神经机器翻译领域的部署远早于此。


「2014 年,NMT 达到和 SMT 同样水准,我们开始关注它。2015 年,学术界发表了超过 SMT 的 NMT 系统,我们就成立了专门的团队做这件事。当时并不知道能否做得出来,因为即使做出来效果很好,性能达不到标准也没法上线。但是我们都认同,虽然做这件事有风险,不做风险更大。」周枫说,「我们比较庆幸开始得非常早,因为深度学习尽管从模型角度做了很多简化,但在工程上还是有非常多『坑』需要逐一踩的。神经机器翻译系统我们做了整整两年,处理的数据数量在一亿句以上。而在性能方面,直到今年春节,还有很多问题没有解决,当时翻译一句话还要一秒钟。从原型到上线,我们的模型在速度上优化了 100 倍。」


在部署方面,团队做了很多尝试。最典型的例子是在推理部分(inference)的硬件选择上。「我们分别尝试了 CPU、GPU 与 FPGA,最后选择了 GPU。」周枫介绍道,「GPU 的特点是并发度高,CPU 的特点是单线程能力强。GPU 的优点在于能够同时翻译很多句子,但是用于翻译的推理障碍还是很多。尽管在单位计算量非常小的时候 GPU 有非常明显的优势,但是翻译一个句子计算量很大,会出现数据吞吐量(throughput)很大但是延迟很长的问题。我们的工程师对此做了非常多的优化。我们也研究了 FPGA,判断是 FPGA 低功耗和定制的特点让它更适合无人机等移动场景,在服务器环境下优势不明显且变成较为困难。」


词典与翻译的长期积累和大用户基数也为团队提供了极大的便利。「在训练数据中,来自互联网的爬虫数据占比最多,然而我们通过其他途径采集的针对性数据在作用上可能更为重要。从词典开始的网络释义工作帮了我们很多。我们通过比较深度的挖掘获取了非常多优质的短语语料,这些语料用于翻译系统,对翻译质量的提升有非常大的贡献。同时大量的用户给我们带来了很多及时的反馈,技术团队能够保持一个月更新一个版本的频率来发现问题、解决问题。」


基于用户需求,实现场景优化、新技术引入与新平台开放








请到「今天看啥」查看全文