正文
“仅仅在文章中用到(面相学)这个词,就足够贴一个科学种族主义的标签了吗?”这是武筱林的疑问。
武筱林 资料图
(原文为英文,由澎湃新闻记者翻译)
2016年11月,我和我的博士生张熙在arXiv上贴出了一篇题为 “Automated Inference on Criminality using Face Images”的论文。该论文在各国学术界,尤其是互联网上引起了广泛的关注和争议。近日,Arcas等三人在Medium网站上发表了《相面术的新外衣》(Physiognomy’s New Clothes)一文。我们赞同三位作者的观点,即AI研究要有益于社会,但我们也发现,他们对于我们的工作,尤其是我们的研究动机和目标存在诸多误读。
该文章(即《相面术的新外衣》,下同)的作者暗示我们有恶意的种族主义动机。他们认为这种暗示很明显,导致我们立马在网络上,尤其是中国网民那里成了千夫所指。我们论文里从未宣称要把我们的研究方法用作司法工具,我们对相关性的讨论也从未延伸到因果关系。任何以客观心态读过我们论文的人,都会明白我们只是想知道,机器学习是否有潜力像人类一样,对人脸形成社会性的看法。要知道,这种同时基于观察者和被观察者的看法是很复杂、很敏锐的。
我们的研究是在挑战机器学习的上限,并将人脸自动识别从生物学维度(比如种族、性别、年龄、表情等)拓展到社会心理学维度。我们只是好奇,能否教会机器复制人类对陌生人的第一印象(个性、风格、器宇等),通过图灵测试。正如我们在论文中所述,直觉上,我们认为对于面部的犯罪性印象是个比较容易测试的选择,事后证明,这是个不幸的选择。
“为了验证我们的假设,即一个人面部的物理特征与其内在特质、社会行为间存在相关性,运用现代自动分类器去区别罪犯和非罪犯,测试其准确率是非常有说服力的。如果面部特征和社会属性真的相关,这两类人群应该是最容易区分的。这是因为,犯罪需要人格中存在很多不正常(离群值)。如果分类器的区别率很低,那么我们就能有把握地否定对面部进行社会性推定的做法。
令人震惊的是,来自谷歌的作者们将上述段落断章取义,凑成了下述臆断强加于我们。
“那些上唇更弯曲,两眼间距更窄的人在社会秩序上更低级,倾向于(用武和张的原话说)‘人格中存在很多不正常(离群值)’,最终导致在法律上更可能被判定犯罪。”
我们认同“犯罪性”(criminality)这个词有点尖锐,我们应该打上引号的。在使用这个词的字面意思,把它作为机器学习的参考标准(“ground truth”)的同时,我们没有警告读者,输入的数据存在噪点。这是我们的严重疏忽。然而,在论文中我们始终保持了一种严肃的中立性;在引言部分,我们声明道:
“在本文中,我们无意也不够格去讨论社会偏见问题。我们只是好奇,全自动的犯罪性推定能有多高的准确率。一开始,我们的直觉是机器学习和计算机视觉会推翻面相学,但结果是相反的。”