专栏名称: 智慧产品圈
营造智慧产品生态圈
目录
相关文章推荐
和家园北社区居委会  ·  1500个免费筛查名额,预约通道现已开启,约满为止 ·  8 小时前  
家有好大事  ·  这些考点易走错!合肥警方重要提醒 ·  11 小时前  
世界肠菌研究会  ·  年轻人胃癌发病率持续增长,长期吃外卖的人,肠 ... ·  16 小时前  
奔腾融媒 都市全接触  ·  “要窒息了”!女子用网红偏方泡脚致呼吸碱中毒! ·  昨天  
奔腾融媒 都市全接触  ·  “要窒息了”!女子用网红偏方泡脚致呼吸碱中毒! ·  昨天  
51好读  ›  专栏  ›  智慧产品圈

突破2nm障碍

智慧产品圈  · 公众号  ·  · 2021-02-25 16:34

正文

请到「今天看啥」查看全文


BEOL(铜互连层)和FEOL(晶体管级)来源:维基百科


从铝到铜

在芯片制造工艺中,晶体管是在晶圆厂的晶圆上制造的。这一工艺是在生产线的前道进行的。而互连和MOL层,是在另一个单独的晶圆厂称为后道线(BEOL)制造的。

直到20世纪90年代,芯片都采用了基于铝材料的互连技术。但在上世纪90年代末,当先进芯片接近250nm时,铝无法承受器件中更高的电流密度而选择铜作为替代。

因此,从20世纪90年代末的220nm/180nm开始,芯片制造商开始从铝转向铜。据IBM称,铜互连电路的导电电阻比铝低40%,这有助于提高芯片的性能。

1997年,IBM宣布了世界上第一个基于220nm技术的铜互连工艺。这种被称为双金属嵌套(dual-damascene)的工艺成为芯片中铜互连制造的标准方法,沿用至今。

最初,这种工艺的芯片具有6层互连。当时,根据维基百科的数据,180nm设备的金属间距为440nm至500nm。相比之下,在5nm节点,芯片由10到15层互连组成,金属间距为36nm。根据TEL,金属间距是指互连线之间的最小中心距。

在双金属嵌套工艺中,首先在器件表面沉积低k介电材料。基于碳掺杂氧化物材料,低k薄膜被用来作为器件的一部分与另一部分的绝缘层。

下一步是在电介质材料中形成微小的通孔和沟槽。每个节点上的通孔/沟槽越来越小。因此,在当今的先进芯片中,芯片制造商正在使用极紫外光刻技术(EUV)来设计通孔。

在未来的节点上,通孔将需要具有多图形的EUV。“EUV多图形模式的挑战与ArFi(193nm浸没)实施过程中遇到的挑战非常相似,”布鲁尔科学公司的高级技术专家Doug Guerrero说。“如果使用ArFi或EUV,(机器对机器的)掩膜将变得至关重要。从材料的观点来看,多重图形化总是包括合并平面化层。平面化材料也称为间隙填充材料。它们必须填充和平整一个高深宽比的非常狭窄的沟槽。”

在该步骤之后,蚀刻图形化结构,形成通孔和沟槽。然后,使用物理气相沉积(PVD),在沟槽内沉积基于氮化钽(TaN)的薄阻挡材料。然后,在TaN阻挡层上沉积钽(Ta)衬垫材料。最后,利用电化学沉积(ECD)技术在通孔/沟槽结构中填充铜。这个工艺在每一层要重复多次,形成一个铜布线方案。

这一工艺在20nm之前没有任何问题,当时互连中的铜电阻率呈指数级增加,导致芯片延迟。因此,从22nm和/或16nm/14nm开始,芯片制造商开始做出一些重大改变。在互连方面,许多人用钴代替钽作为内衬,这有助于降低互连中的电阻。

同样在这些节点上,芯片制造商也从传统的平面晶体管转向下一代FinFETs,后者以更低的功耗提供更高的性能。

在10nm处,英特尔采取了另一个步骤来降低芯片的电阻。英特尔10nm工艺采用13层金属。英特尔的前两个局部互连层,称为金属0(M0)和金属1(M1),将钴作为导电金属,而不是铜。其余的层使用传统的铜金属。

其他芯片制造商则将铜价维持在M0和M1。不过,在10nm/7nm的情况下,所有芯片制造商都将MOL中的微小触点材料从钨改为钴,这也降低了线电阻。

如今,领先的芯片制造商已经将FinFETs和铜互连扩展到5nm。可以肯定的是,先进节点芯片的应用,使得新的和更快的系统成为可能。






请到「今天看啥」查看全文