正文
2009年,Thomas E. Mallouk教授首次提出了利用可见光分解水的染料敏化光电化学电池(Water-splittingdye-sensitized photoelectrochemical cells,WS-DSPEC)的概念: 通过制备高比表面积的TiO
2
或SnO
2
等金属氧化物电极,吸附染料分子敏化剂和氧化水的催化剂,实现类似自然界光合作用系统Ⅱ的水氧化过程。
通过多年来众多科研工作者的研究,改进催化剂和电极的结构等能实现较高效的水分解。但传统WS-DSPEC中吸附在氧化物表面的染料分子直接与水接触,电极在水中的稳定性很差,通常在几分钟之内光电流会迅速衰减,主要原因是吸附在电极上的染料敏化剂对水溶液pH很敏感。
虽然偏碱性环境更有利于氧化水,但当溶液pH超过5时,染料的脱附会造成电极性能极速衰减。利用原子层沉积(Atomic layer deposition, ALD)的技术将吸附的染料敏化剂直接包覆起来构筑一个“mummy”电极,虽然可以减少染料敏化剂的脱附,得到稳定的光电流,但从敏化剂分子到金属氧化物的电子注入产率会大大降低,无法得到较大的光电流。
有鉴于此,宾夕法尼亚州立大学Thomas E. Mallouk教授和北京大学阎云教授团队报道了一种在中性水环境中构建稳定WS-DSPEC的策略。