专栏名称: AI科技评论
「AI科技评论」是国内顶尖人工智能媒体和产业服务平台,专注全球 AI 业界、学术和开发三大方向的深度报道。
目录
相关文章推荐
51好读  ›  专栏  ›  AI科技评论

业界 | 面对核泄露危险,看AI如何解决核电站中的缝隙检测问题

AI科技评论  · 公众号  · AI  · 2017-05-08 22:54

正文

请到「今天看啥」查看全文


“在一个核电厂中,即使是一个小小的裂缝也会导致放射性物质泄漏,”Jahanshahi说,“它可以扩散并导致核事故。”裂缝带来的代价也很大。日益恶化的地下管道泄露放射性氚进入地下水之后,Jahanshahi说,在佛蒙特洋基核电站(Vermont Yankee Nuclear Power Plant),2010年的一起事故就造成多达7亿美金的损失。他同时补充道,1996年康涅狄格Milestone核电站由于阀门泄露造成的事故,耗费了2.54亿美元。

核电站的老化

Jahanshahi的预见在这一时刻到来了。根据世界核工业现状报告,全球接近15%的核能源设备运行时间都超过了他们预设的40年寿命,在美国,有超过三分之一的设备是这样。包括美国在内的几个国家授权电站寿命达到了60年。

随着核电站的老化,它们的部件变得更容易受到热、压力和腐蚀性化学物质而引起裂缝或其他问题。仅在过去的十年中,全球至少有十几家核电厂报道了裂缝问题。

Jahanshahi说,电站出现问题的其中一个原因就是检测不足。他在最近一期的《计算机辅助土木与基础设施工程》杂志中发表了他的研究结果。

问题太多, 预防太少

Jahanshahi与普渡大学的博士生Fu-Chen Chen合作开发的自动化系统,将会在问题变得更糟之前探测到设备问题。

建筑就像人一样,如果你及早发现“症状”,就可以避免“生病”。

实际上 Jahanshahi 和 Chen并不是第一个吃螃蟹的人,此前也有其他方法对裂缝进行检测。但像其他设计用来检查检测视频中单帧画面的方法,经常会错过一些细微的缝隙,而且也很难区分一些异常现象,比如焊点和刮痕。







请到「今天看啥」查看全文