正文
-
PEST分析法:从政治(Politics)、经济(Economy)、社会(Society)、技术(Technology)四个方面分析内外环境,适用于宏观分析。
-
SWOT分析法:从优势(Strength)、劣势(Weakness)、机遇(Opportunity)、威胁(Threat)四个方面分析内外环境,适用于宏观分析。
-
5W2H分析法:从Why、When、Where、What、Who、How、How much 7个常见的维度分析问题。
-
4P理论:经典营销理论,认为产品(Product)、价格(Price)、渠道(Place)和促销(Promote)是影响市场的重要因素。
-
AARRR:增长黑客的海盗法则,精益创业的重要框架,从获取(Acquisition)、激活(Activition)、留存(Retention)、变现(Revenue)和推荐(Referral)5个环节增长增长。
数据分析的方法论很多,这里不能一一列举;没有最好的方法论,只有最合适的。下面我详细介绍一下 AARRR 方法论,对于精益化运营、业务增长的问题,这个方法论非常契合。
对于互联网产品而言,用户具有明显的生命周期特征,我以一个O2O行业的APP为例阐述一下。
首先通过各种线上、线下的渠道获取新用户,下载安装APP。安装完APP后,通过运营手段激活用户;比如说首单免费、代金券、红包等方式。通过一系列的运营使部分用户留存下来,并且给企业带营收。在这个过程中,如果用户觉得这个产品不错,可能推荐给身边的人;或者通过红包等激励手段鼓励分享到朋友圈等等。
需要注意的是,这5个环节并不是完全按照上面顺序来的;运营可以根据业务需要灵活应用。
AARRR的五个环节都可以通过数据指标来衡量与分析,从而实现精益化运营的目的;每个环节的提升都可以有效增长业务。我们下面的分析也是围绕这个方法论展开的。
根据运营工作的实际需要,在参考了 GrowingIO 陈明的文章《一名优秀的数据分析师是怎样炼成的》基础上,我整理了7种分析方法。借助常见的网站/APP数据分析产品,我们非常快速的完成这7种分析。
1.趋势分析
趋势分析是最简单、最基础,也是最常见的数据监测与数据分析方法。通常我们在数据分析产品中建立一张数据指标的线图或者柱状图,然后持续观察,重点关注异常值。
在这个过程中,我们要选定第一关键指标(OMTM,One Metric That Metter),而不要被虚荣指标(Vanity Metrics )所迷惑。
以社交类APP为例,如果我们将下载量作为第一关键指标,可能就会走偏;因为用户下载APP并不代表他使用了你的产品。在这种情况下,建议将DAU(Daily Active Users,日活跃用户)作为第一关键指标,而且是启动并且执行了某个操作的用户才能算上去;这样的指标才有实际意义,运营人员要核心关注这类指标。
2.多维分解
多维分解是指从业务需求出发,将指标从多个维度进行拆分;这里的维度包括但不限于浏览器、访问来源、操作系统、广告内容等等。
为什么需要进行多维拆解?有时候一个非常笼统或者最终的指标你是看不出什么问题来的,但是进行拆分之后,很多细节问题就会浮现出来。
举个例子,某网站的跳出率是0.47、平均访问深度是4.39、平均访问时长是0.55分钟。如果你要提升用户的参与度,显然这样的数据会让你无从下手;但是你对这些指标进行拆解之后就会发现很多思路。
下面展示的是一个产品在不同操作系统下的用户参与度指标数据。
仔细观察的话,你会发现移动端平台(Android、Windows Phone、IOS)的用户参与度极差,表现在跳出率极高、访问深度和平均访问时长很低。这样的话你就会发现问题,是不是我们的产品在移动端上没有做优化导致用户体验不好?在这样一个移动互联网时代,这是非常重要的一个问题。
3.用户分群
用户分群主要有两种分法:维度和行为组合。第一种根据用户的维度进行分群,比如从地区维度分,有北京、上海、广州、杭州等地的用户;从用户登录平台进行分群,有PC端、平板端和手机移动端用户。第二种根据用户行为组合进行分群,比如说每周在社区签到3次的用户与每周在社区签到少于3次的用户的区别,这个具体的我会在后面的留存分析中介绍。
4.用户细查
正如前面所说的,用户行为数据也是数据的一种,观察用户在你产品内的行为路径是一种非常直观的分析方法。在用户分群的基础上,一般抽取3-5个用户进行细查,即可覆盖分群用户大部分行为规律。
我们以一个产品的注册流程为例:
用户经历了如下的操作流程:【访问官网】-【点击注册】-【输入号码】-【获取验证码】。本来是非常流畅的一个环节,但是却发现一个用户连续点击了3次【获取验证码】然后放弃提交。这就奇怪了,用户为什么会多次点击验证码呢?
这个时候我建议您去亲自体验一下您的产品,走一遍注册流程。你会发现,点击【获取验证码】后,经常迟迟收不到验证码;然后你又会不断点击【获取验证码】,所以就出现了上面的情况。
绝大多数产品都或多或少存在一些反人类的设计或者BUG,通过用户细查可以很好地发现产品中存在的问题并且及时解决。
5.漏斗分析
漏斗是用于衡量转化效率的工具,因为从开始到结束的模型类似一个漏斗,因而得名。漏斗分析要注意的两个要点:第一,不但要看总体的转化率,还要关注转化过程每一步的转化率;第二,漏斗分析也需要进行多维度拆解,拆解之后可能会发现不同维度下的转化率也有很大差异。
某企业的注册流程采用邮箱方式,注册转化率一直很低,才27%;通过漏斗分析发现,主要流失在【提交验证码】的环节。