专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
新机器视觉  ·  工业现场相机坐标系和机械手坐标系的标定 ·  昨天  
机器学习研究组订阅  ·  顶会0篇,一夜RLHF爆文刷屏!他靠写作逆袭 ... ·  昨天  
黄建同学  ·  //@摇摆时间线ZHLMI:借这个强调一下, ... ·  2 天前  
爱可可-爱生活  ·  【深入剖析Claude ... ·  2 天前  
爱可可-爱生活  ·  【[90星]torchvista:用一行代码 ... ·  2 天前  
51好读  ›  专栏  ›  机器学习研究会

【推荐】图像分类必读开创性论文汇总

机器学习研究会  · 公众号  · AI  · 2017-08-15 23:13

正文

请到「今天看啥」查看全文


摘要

转自:爱可可-爱生活

Deep Learning models for Image Classification have achieved an exponential decline in error rate through last few years. Since then, Deep Learning has become prime focus area for AI research. However, Deep Learning has been around for a few decades now. Yann Lecun, presented a paper pioneering the Convolutional Neural Networks (CNN) in 1998. But it wasn’t until the start of the current decade that Deep Learning really took off. The recent disruption can be attributed to increased processing power (aka GPUs), the availability of abundant data (aka Imagenet dataset) and new algorithms and techniques. It all started in 2012 with the AlexNet, a large, deep Convolutional Neural Network which won the annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC). ILSVRC is a competition where research teams evaluate their algorithms on the given data set and compete to achieve higher accuracy on several visual recognition tasks.
Since then, variants of CNNs have dominated the ILSVRC and have surpassed the level of human accuracy, which is considered to lie in the 5-10% error range.







请到「今天看啥」查看全文