正文
厄尔尼诺事件的发生对全球各地区的气候灾害均有预兆意义,因此对它的预报已成为气候预测中最重要内容之一。及早并准确地预测厄尔尼诺的发生以及强度,对预防或降低其带来的全球范围内的经济、农业、社会等方面的损失意义重大,而且将帮助政府和相关机构制定政策,应对厄尔尼诺的影响。
目前传统的厄尔尼诺预测方法只能在提前6个月范围内给出比较准确的预测,这一现象称之为,春季预测障碍
(即无法在厄尔尼诺发生的那一年的春季或更早给出准确预测)
。图3显示了18个动力学和8个统计学气候模型预测能力, 我们看到在春季的时候几乎所有的模型都丧失了准确地预测厄尔尼诺的能力。
图3:传统气候模型预测能力示意图。来源于NOAA
为了克服上面提到的春季预测障碍,来自波茨坦气候影响研究所的团队-提出了一种全新的框架用以预测厄尔尼诺事件的开始—即气候网络的方法。不同于一般的复杂网络,在气候网络中将节点认为是全球气候数据集的空间网格中的站点;根据两个站点之间相应的气候数据时间序列对之间的统计相似度,从而定义网络的边。气候网络方法使人们能够以一种全新的角度来了解不同时空尺度上气候系统的动力学演化。
目前基于气候网络的方法可以提前一年预测厄尔尼诺事件的开始
[3-5
]
,其预测准确率超过89%。远远高于传统的气候模型。且该系列方法成功的对2014-2016和2018-2019事件进行了成功的预警。
虽然我们可以克服春季预测障碍成功的预测厄尔尼诺事件的开始,但是至今没有办法长时间预测其强度。而预测强度至关重要,这是因为较强的厄尔尼诺现象通常会导致更多极端事件
(例如洪水、干旱或严重的风暴)
对经济,社会和生态系统造成严重影响。
近日,来自波茨坦气候影响研究所的孟君和樊京芳博士,北京师范大学陈晓松教授以及合作者,提出了一种基于熵理论的方法来预测厄尔尼诺事件的强度
[6
]
。研究论文已在线发表在世界知名期刊美国科学院院刊
PNAS
(https://www.pnas.org/content/117/1/177.short)
,首次克服了长久以来困扰厄尔尼诺预测的“春季预测障碍” ,将对厄尔尼诺现象的发生,特别是强度的预测提前一年。
该文作者提出了一套基于信息熵理论的全新的方法——System Sample Entropy——用来计算厄尔尼诺区域
(Nino 3.4)
近海平面空气或海表温度的复杂度
(包括温度随时间变化的无序性以及不同地点温度变化的同步性或相干性)
。利用这一方法,作者们发现了Nino 3.4区域温度变化的复杂度与厄尔尼诺现象强度存在着非常强和稳定的线性关系,即一年内
(1月1日-12月31日)
Nino 3.4区域的温度变化复杂度越大,那么下一年发生的厄尔尼诺事件的强度就越大。基于这一发现,作者们提出了一套基于每年Nino 3.4 区域温度变化复杂度的大小
(由该区域 System Sample Entropy 量化)
来预测来年厄尔尼诺发生及其强度的方法。该方法目前成功的预测了1984至2019年期间10个厄尔尼诺事件中的9个事件的发生年份,以及24个没有厄尔尼诺现象发生的年份当中的21个,特别是对厄尔尼诺强度预测的平均误差仅为0.23摄氏度。
对于刚刚到来的2020年,基于文中提出的System Sample Entropy的方法,作者们预测厄尔尼诺将有很大概率会在本年下半年再次发生,并发展为一个中等强度甚至高强度的厄尔尼诺事件,其预测强度为1.48+-0.25摄氏度
(图4)
。
政府间气候变化专门委员会的最新报告显示,随着气候变暖,较强的厄尔尼诺现象可能发生得更加频繁。如果是这样的话,那么与厄尔尼诺相关的气候事件也将变得更加剧烈,但是气候变化产生的影响可能不仅仅是厄尔尼诺现象严重程度和相关后果。一些研究表明,全球气候转暖可能增大全球受厄尔尼诺影响的总面积。因此,当厄尔尼诺现象发生时,它对天气的影响可能比当前更严重。
图4:系统熵理论提前一年预测厄尔尼诺事件的开始以及强度。来源[6]
[1]. https://baike.baidu.com/item/厄尔尼诺现象
[2]. Oceanic Niño Index (ONI) [3 month running mean of ERSST.v4 SST anomalies in the Niño 3.4 region (5oN-5oS, 120o-170oW)]
[3]. J. Ludescher et al., Improved El Nin˜ o forecasting by cooperativity detection. Proc. Natl. Acad. Sci. U.S.A. 110, 11742–11745 (2013).
[4]. J. Meng, J. Fan, Y. Ashkenazy, S. Havlin, Percolation framework to describe El Nin˜ o conditions. Chaos 27, 035807 (2017).
[5]. J. Meng, J. Fan, Y. Ashkenazy, A. Bunde, S. Havlin, Forecasting the magnitude and onset of El Nin˜ o based on climate network. New J. Phys. 20, 043036 (2018).
[6]. J. Meng, J. Fan, et al, Complexity-based approach for El Nino magnitude forecasting before the spring predictability barrier. Proc. Natl. Acad. Sci. U.S.A. 117, 177-183 (2020).