正文
当然这里面也会涉及到更多的口语上的交互,又会和语音挂上钩,涉及到多种语音识别,包括和口音、设备关联在一起,会很复杂。但单纯在翻译这个层面,这个会非常快,现在已经做到有帮助。
清华计算机系副教授刘洋
刘 洋:
我个人觉得在「多场景即时对话翻译」领域至少有两个挑战。从方法层来说,最难的就是语言歧义性问题,这是自然语言处理所最大的挑战。人类语言和机器语言不一样,机器语言要求精准、没有歧义,比如 C+,JAVA。但是自然语言的歧义性很高,比如英文词「bank」,既可能是指「银行」,也可能是指「堤岸」。口语交互过程中歧义现象很严重。
从数据层面来说,无论是语音识别、机器翻译还是语言合成,都是数据驱动的方法,系统性能严重依赖于标注数据的规模、质量和覆盖率。对于开放领域的即时对话翻译而言,目前还缺乏大规模、高质量、广覆盖的标注语料库。
搜狗翻译水平已部分超越 Google 等巨头
机器之心:通过深度学习来搭建的实时翻译技术与数据密不可分,搜狗的 NMT 在大型数据集上工作有哪些挑战?
许静芳:
我想这个挑战应该是对所有机器翻译团队都类似的一个有趣的现象是业内翻译做得好的团队大多来自搜索公司。搜索和翻译本身是密不可分的,这个密不可分首先是数据层面,语料的挖掘,搜索本身天然有优势,在这里面,其实都涉及很多自然语言处理、数据挖掘的问题,搜索积累的经验可以很快地应用到翻译上来。
机器之心:相较于谷歌和百度的神经机器翻译,搜狗这次发布的神经机器翻译有哪些差异性的特征?
许静芳:
首先,对翻译问题的理解、重视和投入问题,在不同的公司不同的阶段是有差异的。其次,聚焦在技术上面,NMT 从发展到应用在商业系统里也就这一、两年左右的事情,本身这个技术正处在非常快速的迭代的过程中。如果现在要去比较我们(搜狗)和百度、谷歌的差异,我们自己本身在翻译的模型,语料的挖掘,特别是深度学习模型很大,用的语料很多。在模型在分布式训练上,搜狗也有自己的创新。我们和谷歌最新的工作去对比,在某些方法上,可以看出我们比谷歌做得好,最终在中英两种语言互译的效果优于也验证了这个事情。搜狗比谷歌更有动力去做好翻译这件事情。
搜狗翻译技术持续改进,未来可期
机器之心:刚才谈到模型,现在 seq2seq+attention 的模型已经在 NMT 及其他众多 NLP 任务上取得了非常好的效果,我也注意到搜狗的神经网络做到了 5 层。之前有些论文提到了通过增加更多层的网络来取得更好的效果,您认为这个准确吗,通过不断增加网络层数来提升效果?