正文
一个学者的成长就像鱼在水中游泳,鸟在空中飞翔,树在林中长大一样,受到周边环境的影响。
历史上未曾出现过一个大科学家在没有文化的背景里,能够创造伟大发明的。比如爱因斯坦年轻时受到的都是一流的教育。
一个成功的学者需要吸收历史上累积下来的成果,并且与当代的学者切磋产生共鸣。人生很短,无论一个人多聪明,多有天分,也不可能漠视几千年来伟大学者共同努力得来的成果。这是人类了解大自然、了解人生、了解人际关系累积下来的经验,不是一朝一夕所能够成就的,所以一个人小的时候博览群书是非常重要的。有人自认为天赋很高,不读书就可以做出重要的题目,在我看来是没有意义的。四十多年来,我所接触的世界上知名的数学家、物理学家、社会学家还没有这样的天才。
最近有一位日本80后作家加藤嘉一在新书《中国的逻辑》中谈道,在中国知识非常廉价。中国的物价、房价都在涨,独书价不涨。书价便宜的原因是买书的人少。中国的文化是很深厚的,如果你们年轻人不读书,几千年的文化不能传承。不论经济怎么发展,但是文化不发展,中国都不可能成为大国。所以我希望大家多看书,看有意义的书,这是一件有意义的事情。
在小学学习的数学不能引起我的兴趣,除了简单的四则运算外,就是鸡兔同笼等问题,因此大部分时间花在看书和到山间田野去玩耍,也背诵先父教导的古文和诗词,反而有益身心。
在中学一年级开始学习线性方程,使我觉得兴奋。因为从前用公式解答鸡兔同笼问题,现在可以用线性方程来解答,不用记公式而是做一些有挑战性的事情,让我觉得很兴奋,成绩也比小学的时候好。我父亲在我读9年级的时候就去世了。先父的去世使我们一家陷人困境。但母亲坚持认为孩子们应该继续学业。尽管当时我有政府的奖学金,但仍不够支付我所有的费用。因此我利用业余时间给小孩子做家教挣钱。
我参考了历史上著名学者的生平,发现大部分成名的学者都有良好的家庭背景。人的成长规律很多,原因也很多,相关的学术观点也莫衷一是。但是良好的家教,无论如何都是非常重要的。童年的教育对一个孩子的影响是重要的,启蒙教育是不可替代的,它往往奠定一生事业的基础。
虽然一位家长可能受教育的程度不高,但是他在孩子很小的时候仍然能够培养孩子的学习习惯和学习乐趣。
对孩子们来说,学到多少知识并不是最重要的。兴趣的培养,才是决定其终身事业的关键。我小学的成绩并不理想,但
我父亲培养了我学习的兴趣,成为我一生中永不枯竭的动力,可以学任何想学的东西。相比之下,中国式的教育往往注重知识的灌输,而忽略了孩子们兴趣的培养,甚至有的人终其一生也没有领略到做学问的兴趣。
无论如何,学生回家以后,一定要有温习的空间和时间。遇到挫折的时候,需要家长的安慰和鼓励。这是很重要的事情。
另外,家长和老师需要有一个良好的交流渠道,才会知道孩子遇到的问题。现在有些家长都在做事,没有时间教导小孩,听任小孩放纵,反而要求学校负责孩子的一切,这是不负责任的。反过来说,由于只有一个小孩的缘故,父母很宠爱小孩,望子成龙。很多家长对小孩期望太高,往往要求他们读一些超乎他们能力的课程。
略有成就,就说他们的孩子是天才,却不知是害了孩子。
每个人应该努力了解自己的能力,努力学习。
平面几何的学习是我个人数学生涯的开始。在中学二年级学习平面几何,第一次接触到简洁优雅的几何定理,使我赞叹几何的美丽。欧氏《几何原本》流传两千多年,是一本流传之广仅次于《圣经》的著作。这是有它的理由的。它影响了整个西方科学的发展。17世纪,牛顿的名著《力学原理》的想法,就是由欧氏几何的推理方法来构想的。用三个力学原理推导星体的运行,开近代科学的先河。到近代,爱因斯坦的统一场论的基本想法是用欧氏几何的想法构想的。
平面几何所提供的不单是漂亮而重要的几何定理,更重要的是它提供了在中学期间唯一的逻辑训练,是每一个年轻人所必需的知识。平面几何也提供了欣赏数学美的机会。一个很有名的例子,江泽民主席在澳门濠江中学提出的五点共圆的问题。我第一次听说觉得非常有意思,很多读者对江主席这个问题都很感兴趣,都想从基本定理出发推导这个定理。最近我很惊讶地听说,很多数学教育家们坚持不教证明,原因是学生们不容易接受这种思考。诚然,从一个没有逻辑思想训练的学生,到接受这种训练是有代价的。怎么样训练逻辑思考是比中学学习其他学科更为重要的。将来无论你是做科学家,是做政治家,还是做一个成功的商人,都需要有系统的逻辑训练,我希望我们中学把这种逻辑训练继续下去。中国科学的发展都与这个有关。
明朝利玛窦与徐光启翻译了《几何原本》这本书,徐光启认为这本书的伟大在于一环扣一环,能够将数学的真理解释清楚明了,是了不起的著作。开始时中国数学家不能接受这种证明的方法,甚至到了清朝康熙年间,几何只讲定理的内容不讲证明,影响了中国近代科学的发展。
几何学影响近代科学的发展,包括工程学、物理学等,其中一个极为重要的概念就是对称。希腊人喜爱柏拉图多面体,就是因为它们具有极好的对称性。他们甚至把它们与宇宙的五个元素联系起来:
火——正四面体
土——正六面体
气——正八面体
水——正二十面体
正十二面体代表第五元素,乃是宇宙的基本要素。
这种解释大自然的方法虽然并不成功,但是对称的观念却自始至终地左右了科学的发展,并终于演化成群的观念。到20世纪时,它提供了高能物理的计算以及基本观点的形成,这个概念今天已经贯穿到现代数学与物理及其他自然科学和工程应用等许多领域。
我个人认为,即便在目前应试教育的非理想框架下,有条件的、好的学生也应该在中学时期就学习并掌握微积分及群的基本概念,并将它们运用到对中学数学和物理等的学习和理解中去。牛顿等人因为物理学的需要而发现了微积分。而我们中学物理课为什么难教难学,恐怕主因就是要避免用到微积分和群论,并为此而绞尽脑汁,千方百计。这等于是背离了物理学发展的自然的和历史的规律。
至于三角代数方程、概率论和简单的微积分都是重要的学科,这对于以后想学理工科或经济金融的学生都极为重要。