正文
什么又是对弧长的曲线积分呢? 例如求一个线性弯曲刚体的长度,或者在这个长度上做加权的积分。由于长度信息不能分解成x,y轴的投影加和,所以和对坐标的曲线积分不一样。电磁场的积分 问题就是对弧长的,做环路曲线积分,是同等维数积分里面最复杂的情况,可以从格林公式推导出等效的2重积分进行求解。格林公式怎么理解? 对于曲线积分必须知道x/y之间的某种函数关系,但是很多情况下根本写不出来,或者根本无法积分,所以采取分布的求解办法映射到2重积分。格林公式推导出 了函数解析的概念,但是这个解析的函数仍然是一个全导数的原函数。直到复变函数的柯西-黎曼方程才给出了复变函数解析的充要条件。对坐标的曲线积分怎么求 呢? 可以把对弧长的曲线积分映射为对坐标的曲线积分,ds=((1+(dy/dx)^2)*dx)^0.5的转化式子表示,因为 S(Pdx+Qdy+Rdz)=S(Pcosa+Qcosb+Rcosc)ds,其中cosa=dx/ds是曲率。对弧长的曲线积分的推理过程可以参考
http://sxyd.sdut.edu.cn/gaoshu2/lesson/10.1duihuchang.htm
。这个在物理里面有个电磁学公式就能体现出来,麦克斯韦的四个公式之一,磁场对时间的偏导数对该磁场区域面积的积分就等于该区域电场对该区域边界的环积分----也就是应该反过来理解格林公式,导数函数的面积分等同于原函数的曲线积分。
2维积分有什么用? 一个用处就是求解非常困难的1维积分问题(复变函数是2维积分的通用形式),下面这个例子来自于网络(
http://sxyd.sdut.edu.cn/gaoshu2/lesson/9.2jisuanfa.htm
),用2重积分解决了概率积分公式的问题。
一维的定积分通过牛顿---莱布尼茨公式得到了完满的解决,等于不定积分原函数的两个取值之差。那么格林公式的意义呢? 曲线积分,分成dx和dy的两部分分别证明。考虑凸面曲线的情况,因为其他情况可以分解为若干个凸面曲线的情况。例如要证明格林公式中关于dy的部分,就 可以看作很多条平行于x轴的线穿过被积分的曲线,其中每一条直线和曲线交与两点,靠近y轴左半平面的点记做Q1,靠近y轴右半平面的点记做Q2,那么根据 曲线积分的正向定义,逆时针方向,Q1点的微元dy是正的,Q2点的微元dy是负的。然后微元的和就是Q1*dy+Q2*(-dy)=(Q1- Q2)dy。好了,Q1-Q2又是多少呢? 由牛顿莱布尼茨公式得到它是Q2-Q1这条线段上Q'(x)的积分和。那么积分和的和就是一个2重积分,这无数条平行于x轴的线段共同构成了曲线围绕而成 的面积----注意在面积内的每一条线段都满足可导条件,也就是这个面积之内的点处处可积。那么dx的部分为什么有负号? 同理,由正相的定义,靠近离x轴上半平面的那个交点上面的微元是负数,靠近x轴下半平面的交点微元是平行于正向的,牛-莱公式前面就有了负号。推广一下, 把曲线积分和2重积分之间的变幻关系放到3维空间,就有了斯托克斯定理。我们把格林公式看成斯托克斯定理的特殊形式。
格林公式有什么作用呢? 曲线积分不好算,就换成2重积分;2重积分不好算,就变成曲线积分。还有一个性质,对于符合积分与路径无关的曲线积分,可以化为一个2重积分(0),和一 个围绕不可导点的曲线积分----这个围绕不可导点的曲线可以任意取以使得积分可以很容易的求出(复变函数则用留数作了)。所谓的和路径无关,说明被积函 数的原函数是个解析的场函数,因此才能和路径无关,这就是格林公式的物理意义和能量意义。而高斯公式关心的是场的密度和场强大小,是另一个物理概念范畴。
----------------------------------------
从曲线积分出发,从格林公式出发,高斯和黎曼得到了复变函数: 把x和y作为一个整体z来研究
有一幅很著名的画叫做"神秘的小岛",这个画的内容看起来是个探险的小岛,但是把一个圆柱形的镜面放到画的中央,人们惊奇的发现其实这是作者的自画像。如 果这幅洋洋洒洒的油画是代表了实数的问题,那些无穷无尽的无比复杂的现实问题,那么这个圆柱形的镜子就是"复数"这样一个发明,它把无穷复杂的问题变成了 有穷范围内能表达的问题。由于一一映射的存在,实数域难以解决的问题通过映射和等效,在复数域通常能得到简单的解答,再映射回实数域,便是问题的解。
复数,是一个2维的数域,它用两个连续的数轴表示两个分量,有实数的连续性(无穷的值对),有线性代数离散的性质(2维度的变量之间相互正交),把无穷的 影射变换到一个简单的圆周上面:三角函数变成幅度+相位的值对,相位变化变成旋转,指数运算变成乘法,对数运算变成除法,微分方程变成了指数形式的特征方 程。实数轴是它的一个子域。数字的正负变成了数字的方向,-1代表旋转180度,所以(-1)(-1)=1,转180度当然回来了。虚数i代表旋转90 度,i*i=-1,代表旋转180度。例如y=ax+b的方向矢量为(a,1),相当于向量z=a+i。