专栏名称: EETOP
EETOP电子网(中国电子顶级开发网)是国内最顶级的电子行业工程师社区,涉及:嵌入式、智能硬件、半导体集成电路设计及制造等。 为您分享论坛精华内容、行业最新资讯、产品及技术 。 网址:www.eetop.cn bbs.eetop.cn
目录
相关文章推荐
51好读  ›  专栏  ›  EETOP

走进深度学习,你需要先了解这25个概念和术语...

EETOP  · 公众号  · 硬件  · 2017-05-25 07:04

正文

请到「今天看啥」查看全文



在下图中,我们将“n”个输入给定为X1到Xn而与其相应的权重为Wk1到Wkn。我们有一个给定值为bk的偏差。权重首先乘以与其对应的输入,然后与偏差加在一起。而这个值叫做u。


U =ΣW* X+ b


激活函数被应用于u,即 f(u),并且我们会从神经元接收最终输出,如yk = f(u)。



常用的激活函数


最常用的激活函数就是Sigmoid,ReLU和softmax


a) Sigmoid—— 最常用的激活函数之一是Sigmoid,它被定义为:

来源:维基百科


Sigmoid变换产生一个值为0到1之间更平滑的范围。我们可能需要观察在输入值略有变化时输出值中发生的变化。光滑的曲线使我们能够做到这一点,因此优于阶跃函数。


b) ReLU(整流线性单位) ——与Sigmoid函数不同的是,最近的网络更喜欢使用ReLu激活函数来处理隐藏层。该函数定义为:


当X>0时,函数的输出值为X;当X

来源:cs231n


使用ReLU函数的最主要的好处是对于大于0的所有输入来说,它都有一个不变的导数值。常数导数值有助于网络训练进行得更快。


c) Softmax—— Softmax激活函数通常用于输出层,用于分类问题。它与sigmoid函数是很类似的,唯一的区别就是输出被归一化为总和为1。Sigmoid函数将发挥作用以防我们有一个二进制输出,但是如果我们有一个多类分类问题,softmax函数使为每个类分配值这种操作变得相当简单,而这可以将其解释为概率。


以这种方式来操作的话,我们很容易看到——假设你正在尝试识别一个可能看起来像8的6。该函数将为每个数字分配值如下。我们可以很容易地看出,最高概率被分配给6,而下一个最高概率分配给8,依此类推……


5)神经网络(Neural Network)—— 神经网络构成了深度学习的支柱。神经网络的目标是找到一个未知函数的近似值。它由相互联系的神经元形成。这些神经元具有权重和在网络训练期间根据错误来进行更新的偏差。激活函数将非线性变换置于线性组合,而这个线性组合稍后会生成输出。激活的神经元的组合会给出输出值。


一个很好的神经网络定义——


“神经网络由许多相互关联的概念化的人造神经元组成,它们之间传递相互数据,并且具有根据网络”经验“调整的相关权重。神经元具有激活阈值,如果通过其相关权重的组合和传递给他们的数据满足这个阈值的话,其将被解雇;发射神经元的组合导致“学习”。


6)输入/输出/隐藏层(Input / Output / Hidden Layer)——







请到「今天看啥」查看全文