专栏名称: 大数据D1net
大数据D1net隶属于企业网D1Net,提供大数据存储、大数据分析、大数据挖掘等有关大数据的最新技术和资讯。
目录
相关文章推荐
51好读  ›  专栏  ›  大数据D1net

分析工程绩效以创建数据驱动的团队

大数据D1net  · 公众号  · 大数据  · 2024-01-24 16:46

正文

请到「今天看啥」查看全文


数据驱动的方法对于有效管理技术工作的重要性


根据Gartner最近的一项研究,65%的企业领导人同意他们的决策比两年前更复杂,53%的人同意现在有更高的期望来证明这些决策是合理的。不幸的是,只有33%的大型企业有分析师练习决策智能。

当涉及到工程团队时,这种增加的复杂性是由于开发团队的来源和组装方式的变化,快速适应新技术的需要,以及削减成本和提高绩效的压力增加。科技组织不再仅仅依赖办公室团队。混合员工通常完成项目,包括远程员工、承包商、外部机构和合作伙伴,这使得管理者只有在偏向最显眼的员工时,才有可能依赖传统的定性方法来评估和管理人才。

与此同时,开发团队正被拉向许多不同的方向,因为企业需要适应AI和其他新兴技术的持续颠覆,以及推出新功能和产品的需求。在不能很好地了解个人或团队贡献的情况下,经理如何评估各种项目的绩效?

事实是,只有某些数据点才能解决工程性能中的可见性问题,这就是为什么人们相信不可能衡量开发团队的绩效。对于工程师,你需要洞察和理解日常活动和代码承诺,以了解正在做什么、优先考虑哪些事项,并知道你的工程师组织是否与更大的业务战略保持一致。

当公司只衡量产量或花费的时间时,他们只能了解情况的一部分。你必须通过跟踪数十个特征和度量来创建开发团队绩效的客观、全面的视图。

这种整体观点必须提供战略和战术洞察力才能成功。2023年,公司意识到对其工程师的战术观点的需求,并需要更多。评估团队和个人的绩效,并根据这些衡量标准做出决策,需要可靠、客观的绩效数据。

然而,随着科技领导者希望在2024年填补这一缺口,他们将开始认识到他们对开发团队业绩的战略观点存在差距。衡量个人的贡献是有价值的,但如果你没有收集对整个软件开发生命周期的见解并确定改进流程的方法,任何更改都只会加剧你的问题。2024年是探索数据驱动方式以更好地了解你的团队和流程的一年。

AI和客观性能数据


随着对提高工程师绩效的数据驱动策略的需求增加,跟踪工程师的技术也得到了进步。AI现在可以用于更有效地分析来自数十个不同性能指标的数据,并创建单一的整体视图,这一客观的性能数据使你能够找到瓶颈,调整你的团队,并复制顶级制作人。






请到「今天看啥」查看全文