正文
DeepMind 最新研究:将认知心理学首次引入深度神经网络研究
从识别和推理图像中的物体,到以超人的水准玩 Atari 和围棋游戏,深度神经网络已经学会完成很多了不起的任务。而随着这些任务和网络结构变得越来越复杂,神经网络学习得到的解决方案也变得越来越难以理解。
这就是著名的“黑箱”问题。这一问题已随着神经网络在现实世界中越来越多的应用而日益凸显。
在 DeepMind,我们正致力于扩展理解和解释深度神经网络的工具箱。在我们已被 ICML 接受的最新论文(Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study,地址:https://arxiv.org/pdf/1706.08606.pdf)里,我们为这一问题提出了新的方法:采用认知心理学中的方法来理解深度神经网络。
认知心理学通过测量行为来推断认知的机理,有大量文献描述这些机理,更不乏相关的实验论证。随着我们的神经网络在一些特定任务上接近人类水平,认知心理学中的一些方法和黑箱问题的关系越来越紧密。
为了展示这一点,我们的研究报告包括了一个案例研究:我们设计了一个实验,来阐明人类认知,从而帮助我们理解深度神经网络是如何完成一个图像分类任务的。
我们的研究显示,认知心理学家观察到的行为,同样出现在深度神经网络中。而且,对于网络是如何完成图像分类任务的,研究结果揭示出有用且令人惊讶的洞见。更笼统地说,案例研究的成功体现出了使用认知心理学理解深度学习系统的潜力。
用小样本词汇学习模型测量形状偏好。
在我们的案例研究中,我们思考了儿童是如何识别和标识物体的——认知发展心理学对此研究较为丰富。儿童从一个示例中猜出一个单词的意义——所以称为小样本词汇学习——进行得是如此简单,让人禁不住认为小样本学习是一个简单的过程。然而,哲学家Willard Van Orman Quine 提出的经典思想实验却展现出这是个多么复杂的问题。
一位田野语言学家去拜访一个语言完全不同的文化。该语言学家正在努力从一位热心的本地人那里学一些词语。这时一只兔子迅速地跑过。本地人说:“gavagai”,语言学家这时需要推理这个新词语的意义。语言学家面对的可能性多种多样,“gavagai”指的可能是兔子、动物、白色的东西、这只具体的兔子或是兔子的某个部位。有无数种可能的推理,人类如何能选出对的那一个?