专栏名称: 雷峰网
中国智能硬件第一媒体
目录
相关文章推荐
新浪科技  ·  【#成年人为什么需要Labubu#】在社交媒 ... ·  昨天  
天津市应急管理局  ·  沉浸式互动宣传 带您查找身边安全隐患 ·  2 天前  
天津市应急管理局  ·  沉浸式互动宣传 带您查找身边安全隐患 ·  2 天前  
36氪  ·  大学里的水课,为什么都长一个样 ·  3 天前  
51好读  ›  专栏  ›  雷峰网

格灵深瞳 CEO 赵勇:Nvidia 成功背后的远见与坚持

雷峰网  · 公众号  · 科技媒体  · 2017-02-08 22:17

正文

请到「今天看啥」查看全文



加入雷锋网,分享 AI 时代的信息红利,与智能未来同行。听说牛人都 点了这里


雷锋网按:本文作者赵勇,格灵深瞳 CEO,雷锋网授权发布。

2016 年 人工智能 最吸引眼球的事件莫过于谷歌旗下的 DeepMind 依靠人工 智能 算法的阿尔法狗在围棋比赛中大胜人类顶尖选手。但要算商业价值的落地,2016 年人工智能的赢家则非 Nvidia(英伟达)莫属。这家全球领先的显卡公司最新的季度财报(截至 2016 年 10 月 30 号)显示该公司的营收比去年同期增长 54%,尤其是在数据中心业务方面有了两倍多的增长。该公司的股票在过去的一年中也增长了 4 倍多,稳坐了标普 500 的榜首。

Nvidia 在人工智能芯片市场的真实统治力,可能比股票市场上的亮眼成绩更为显著。尽管市场上也存在其他 深度学习 训练(training)和预测(Inference)的解决方案,但试问各家 AI 企业,无论其内部的模型训练,还是销售给最终客户的智能产品,绝大多数还是采用了 Nvidia 的 GPGPU 方案。在 Nvidia 不断从各个角度(服务器、PC、嵌入式、汽车、训练专用和预测专用)推陈出新的时候,其他各家竞争公司基本上还处在尝试初次产品化的过程中。据我粗略估计,Nvidia 在人工智能芯片领域,领先最接近的竞争者至少有 2 年的时间。

今天 Nvidia 在人工智能领域的优势绝对不是一日之功。事实上整个深度 神经网络 技术在过去三年的崛起,除了大规模数据(如 ImageNet)提供了训练深度网络的基础条件,通用图形运算单元(GPGPU)技术提供的强大运算能力也功不可没。如果没有 Nvidia 的 CUDA 平台,科学界证实深度学习巨大潜力的时间不知道还要推迟多久。更难能可贵的是,GPGPU 技术使得在 PC 级别的计算机上进行高密度的高性能运算成本大幅降低,以至于一个普通科研人员的台式电脑都有可能部署上万个并行处理内核。这使得深度学习技术迅速地在科技界发展和普及起来。可以这么说,如果没有 GPGPU,坚持研究了二十多年神经网络算法的 Yann LeCun 和 Hinton 教授们,恐怕还得继续在学术界被继续埋不少年。

而是什么原因使得一家以提供 3D 游戏渲染的显卡公司,在这个重要的历史节点,扮演了救世主的角色呢?

本文基于我个人的经历和观察,提供一些相关的线索和理解。在这个过程中有两个关键性的人物,分别是英伟达的 CEO 黄仁勋(Jen-Hsun Huang),以及英伟达的前首席科学家 David Kirk。

Nvidia 的 CEO Jen-Hsun Huang(黄仁勋)大名鼎鼎,在硅谷可能是最有成就的华裔企业家。关于 David Kirk 的官方报道却很少,在 Nvidia Research 的网站上可以看到他从 1997 年到 2009 年担任 Nvidia 的首席科学家(Chief Scientist),是美国工程院院士,目前是 Nvidia fellow。事实上了解 Nvidia 历史的人都知道,这家 1993 年创建的公司,真正的拳头产品 GeForce 系列就是 1999 年上市并且打响了国际声誉的。也就是说,David Kirk 任职期间,他带领 NV 创造了至今仍是全世界最畅销的独立显卡产品。

对于高性能运算以及人工智能领域的学者来说,David Kirk 最伟大的功绩则是他促成了 GPU 通用化,推广了 CUDA 平台以及 OpenCL 标准。在摩尔定律面临时钟频率无法继续进步的时代,GPGPU 这种低成本大规模的 SIMD 并行处理架构,让很多普通人的计算机变成了超级电脑,也让本该寿终正寝的摩尔定律继续发光发热。他发明的 GPGPU 科技,给历经苦难的神经网络技术,铺垫了一条通往苦尽甘来的道路,也成就了人工智能当前大发展的局面。

我有幸于 2008 年在 Nvidia Research 作实习生。那时我还是一枚计算机视觉专业的博士候选人。当时从事人工智能研究专业的博士生,日子过得可不像今天的师弟师妹们那么痛快。整个领域整体还处在不靠谱的状态,也没有专门针对计算机视觉而设计的专用芯片。学生时期的我,为了实现视觉信号实时处理,钻研过嵌入式 CPU、DSP、FPGA 等方案。这些方案要么性能不足,要么开发流程复杂不便。我甚至尝试过同时使用十几台服务器并行处理一路实时视频流的视觉理解(也真是土豪极了)。2007 年 Nvidia 推出了 CUDA beta 版,我在 EPSON 实验室自己摸索着用一块普通的游戏显卡,把一个视角转换功能(使得一台投影仪在任意形状和颜色的背景上显示出理想画面)的性能,相比最好的台式机 CPU 解决方案,提高了整整 50 倍。从此以后我就认定了 GPGPU 是人工智能的重要解决方案,我的科研人生就此走上了康庄大道。EPSON 的实习结束后,我申请了 Nvidia Research lab 的实习生,希望深入研究一下 GPGPU 在计算机视觉信号处理中的应用。

很幸运的是,我实习期间的名义导师就是 Nvidia 首席科学家 David Kirk。不过由于 Kirk 先生太忙,整个实习期间我和他其实也只见面交流了几次而已。Kirk 先生教导学生的方式挺有意思。我进公司第一次见到导师,问我的任务是什么。Kirk 先生说你有两个任务:第一个任务是花两周的时间想清楚自己想解决什么问题;第二个任务就是用实习剩下的时间完成那个任务(这不就是放羊吗?)。Kirk 先生一方面组织科研,一方面花很多时间研究公司未来的产品策略,近在咫尺却实在没有时间指导学生,于是就委托了远在明尼苏达的 Michael Garland 博士和佛吉尼亚的 David Luebke 教授远程指导在硅谷实习的我。

Nvidia 的 CEO Jen-Hsun Huang 工作很忙,但是他对于研究院的工作极其感兴趣。我亲眼目睹黄总在实验室和研究员们讨论问题时的认真和耐心。2008 年夏天有个专为实习生安排的 demo 展示会。没想到那天 Jen-Hsun 也来参观,并且很耐心地巡视实习生作品。6 年之后的 2014 年,当我在 Nvidia 北京办公室代表我的创业公司再次见到 Jen-Hsun 时,他竟然一口叫出了我的名字并回忆起当年我给他做的展示。这样的记忆力和洞察力,让我印象深刻。

那几年,David Kirk 的主要精力都在试图把原来只用来作 3d 渲染加速的 GPU 技术通用化,让更多的应用分享到大规模 SIMD 运算阵列的性能优势。在一次聊天中,Kirk 跟我说他从 2003 年就开始琢磨这个问题:那时 Intel 刚刚推出了四核的 CPU 处理器,NV 就已经推出包含了 100 多个 SIMD 内核的 GPU 了。Intel 的处理器可以通过多线程技术被所有计算机应用分享;但是 GPU 基本上还是只能通过 OpenGL/DirectX 等高等绘图渲染接口,或者使用极度麻烦的 Shader Program 接口跟用户交互。如果能够提供合适的编程模型,把丰富的 GPU 并行运算资源给开发者分享出来,那么每一个用户的 GPU,都可以变成一台上百核的大规模高性能计算机。







请到「今天看啥」查看全文