正文
ecDNA的神秘特性长期以来令研究人员着迷,但要在实验室中再现其形成和行为一直是一大挑战。传统方法无法精准模拟ecDNA的复杂性,这使其致癌机制难以全面揭示。然而,该研究利用创新的基因工程技术,不仅成功诱导了ecDNA的生成,还能够实时追踪其动态变化,为该领域提供了突破性的工具。
研究人员采用了基于Cre-loxP系统的工程化手段,通过在细胞和小鼠基因组中引入特定的靶点区域(loxP位点),实现了对目标DNA片段的环化和释放。当Cre重组酶在这些位点之间作用时,靶基因区域(如MDM2和MYC)会被切割并形成环状ecDNA。这种方法不仅能够精确控制ecDNA的生成,还可以通过荧光标记(如GFP和mScarlet蛋白)追踪这些小环DNA在细胞内的分布和行为。
在HCT116结直肠癌细胞系中,研究人员成功诱导了1.5 Mbp大小的MDM2基因片段形成ecDNA,并通过荧光显微镜观测到这些环状DNA在细胞中的随机分配。更重要的是,他们还通过实时定量PCR和全基因组测序(sWGS)验证了这些ecDNA的存在和扩增能力。
为了进一步研究ecDNA在体内的作用,研究团队还设计了一种Cre诱导的小鼠模型。这些小鼠携带能够生成含有癌基因的ecDNA的“潜伏”基因组,当诱导条件激活时,小鼠体内的肝细胞会生成大量的ecDNA,从而导致肿瘤快速形成。这种模型不仅再现了ecDNA驱动癌症的过程,还验证了其对肿瘤发生的关键作用。
这种“定制化”的基因工程技术为ecDNA研究打开了一扇新窗。它不仅揭示了ecDNA的生成机制,还为进一步探索其在肿瘤发生中的功能提供了强有力的工具。
ecDNA工程策略的可行性
(Credit:
Nature
)
研究人员使用Cre-loxP系统,通过在基因组中插入特殊设计的“环化盒”(circularization cassette),在特定位点切割染色体片段并使其环化,生成ecDNA。这种策略通过荧光标记(如GFP和mScarlet蛋白)实现了ecDNA的可视化和动态追踪。
在HCT116结直肠癌细胞系中,研究人员通过基因编辑技术生成了两种对照模型。
ecMDM2:
在MDM2基因周围插
入同向的loxP位点,允许Cre酶诱导生成环化的ecDNA。
invMDM2:
插入反
向的loxP位点,使基因组片段在Cre酶作用下发生反向重组(而非环化)。
两种模型的设计验证了环化机制的特异性。
感染表达Cre酶的腺病毒(AdCre)6天后,ecMDM2细胞中出现了显著的“双阳性”(mScarlet+GFP+)细胞群,代表成功生成了含ecDNA的细胞。此外,“单阳性”细胞群(mScarlet+GFP−)表明部分ecDNA因随机分配而丢失。
在ecMDM2模型的双阳性细胞中,通过显微镜观察到染色体旁边的小环结构,这些结构代表ecDNA。在50多个细胞中统计,双阳性ecMDM2细胞中的ecDNA数量显著高于invMDM2对照细胞(统计学显著性P < 2.22 × 10⁻¹⁶)。
使用荧光原位杂交技术(FISH),研究人员发现ecMDM2细胞中有大量绿色的MDM2信号位于环状ecDNA上,同时12号染色体上的MDM2信号有所丢失,进一步证明ecDNA的生成。