正文
传统“引导编辑”的效率受到DNA错配修复(Mismatch Repair,MMR)系统的限制。MMR是一种维护基因组完整性的细胞修复机制,能够识别并修复DNA中的错配错误。然而,这一机制也会无意中修复引导编辑酶引入的目标突变,从而降低了编辑成功率。为了解决这一问题,
研究人员在K562细胞中敲除了MMR的核心基因MLH1,建立了缺乏MMR功能的PEmaxKO细胞系
。
通过
在PEmaxKO细胞中稳定表达增强版的引导编辑酶(PEmax)及优化后的引导编辑向导RNA(epegRNA),研究人员显著提高了编辑效率
。例如,针对HEK3 +1 T>A和DNMT1 +6 G>C突变,在PEmaxKO细胞中的成功率分别达到了
95%
和
94%
,而在标准的PEmax细胞中,这一效率仅为2.3%和55.9%。特别是在使用epegRNA时,PEmaxKO细胞在28天后几乎实现了完美的编辑效果,精确编辑率达到了95%以上。这一数据强调了在MMR缺失背景下,PEmaxKO结合epegRNA的巨大潜力。
MMR缺失的策略使得引导编辑可以绕过内源性修复机制的干扰,从而显著提高编辑的成功率。这一策略尤其适用于难以编辑的基因位点。
通过消除MMR功能,研究人员可以专注于靶向编辑,减少由于意外修复带来的偏差。这种方法为未来更复杂的编辑任务提供了基础,为破解难以操控的基因组区域提供了一种有效的方法。
epegRNA的优化:从实验到广泛应用
在该研究中,
研究人员对引导编辑向导RNA进行了优化,开发了一种包含“tevopreQ1”基序的新型向导RNA,称为epegRNA
。与传统的pegRNA相比,epegRNA在细胞中更加稳定,能够更高效地引导引导编辑酶实现目标序列的编辑。
具体数据显示,在PEmaxKO细胞中,epegRNA用于HEK3 +1 T>A突变的成功率为95.2%,而传统pegRNA的成功率仅为48.3%。对于DNMT1 +6 G>C突变,epegRNA的成功率达到了94.8%,相比之下传统pegRNA的成功率为55.9%。这些数据表明,在MMR缺失的背景下,epegRNA不仅提高了稳定性,也显著提升了编辑效率。
为了推动大规模筛查和功能研究,
研究人员进一步对epegRNA进行了工程化,构建了一个包含约240,000个epegRNA的文库,覆盖了17,000个密码子位置。
该文库被用于高通量的基因敲除研究,并最终在1,149个关键基因中发现了7,996个引起负向选择的无义突变(nonsense mutation)。例如,在PEmaxKO细胞中,HEK3 +1 T>A和DNMT1 +6 G>C突变在28天内的精确编辑率分别达到了95%和94%,显著高于传统细胞系的编辑效率。这些突变对细胞生长产生了显著影响,揭示了它们在基因功能中的重要性。
在文库的应用中,研究人员不仅分析了这些突变对细胞增殖的影响,还探讨了不同类型突变在细胞代谢、信号传导和基因表达调控中的作用。结果显示,某些无义突变对关键代谢途径的抑制作用特别显著,这为进一步理解细胞代谢调控中的基因网络提供了重要线索。这些发现让我们更深入地了解了细胞如何通过基因调控来应对代谢需求的变化。
通过稳定表达的PEmax和epegRNA文库,实现高效精确编辑的实验过程和结果
(Credit:
Nature Methods
)
研究人员设计了两个自靶向“传感器”文库,将epegRNA的表达盒与传感器目标序列相链接,用于评估大量引导RNA和目标序列对的编辑效果。该方法能够在PEmax和PEmaxKO细胞中对数千个epegRNA-目标对进行评估,帮助分析不同引导RNA对靶点的编辑效率。
+5 G>H的筛查显示,在PEmaxKO细胞中,编辑效率显著提高。+5 G>C的编辑效率最高(中位编辑率达83.0%),而+5 G>A和+5 G>T也显示出类似的高编辑效率(分别为81.8%和83.0%)。在PEmax细胞中,+5 G>C编辑的效率也优于其他类型的替换。
研究人员还设计了一个“传感器”文库,评估了PEmaxKO细胞中更多种类的编辑类型。在10天内,大多数编辑都取得了高效率,+1至+13个核苷酸位置的编辑尤其有效(中位精确编辑率为50-80%),显示出在不同位置和替换类型上的编辑效率。
多重筛查与表型分析:精准与高效
为了深入理解基因突变的功能影响,研究人员设计了一种多重筛查策略。在实验中,他们
利用上述引导编辑文库,在PEmaxKO细胞中稳定表达epegRNA,通过测量不同实验样本中特定epegRNA的丰度来评估各突变的功能影响
。对于导致细胞生长停滞或死亡的突变,epegRNA的丰度显著降低,形成所谓的“负向筛查表型”。
通过高通量测序分析,研究人员发现,在7,996个无义突变中,有超过85%的突变表现出负向选择的表型。例如,DNMT1基因中某个特定位点的无义突变导致细胞增殖速率降低了60%以上。此外,
同义突变在某些情况下也显示出显著的表型影响,尽管这些突变未改变氨基酸序列,但可能影响基因的剪接效率或mRNA的稳定性。
在表型分析中,研究人员还发现了若干对细胞耐药性有显著影响的突变位点,这些突变与细胞对药物的敏感性呈现出明显的相关性。这意味着,
通过高通量筛查,研究人员不仅能够找到对细胞存活至关重要的基因,还能识别与药物反应相关的关键突变
。这为未来开发个性化药物治疗提供了理论支持,也为深入研究药物耐药性机制提供了可能性。
这种筛查方法的显著优势在于其高度特异性。
研究表明,epegRNA对特定基因突变的作用具有极高的特异性,几乎不产生非目标效应。这使得研究人员能够通过这种高通量筛查,精确地找出对细胞功能产生重大影响的基因突变,而不必担心因非特异性效应而产生误导。