专栏名称: AI科技评论
「AI科技评论」是国内顶尖人工智能媒体和产业服务平台,专注全球 AI 业界、学术和开发三大方向的深度报道。
目录
相关文章推荐
中新经纬  ·  机器人之后,荣耀不止于智能手机制造 ·  7 小时前  
中新经纬  ·  机器人之后,荣耀不止于智能手机制造 ·  7 小时前  
机器学习研究组订阅  ·  陶哲轩再爆:一个月三破18年未解难题!Alp ... ·  21 小时前  
机器之心  ·  开启 AI ... ·  昨天  
宝玉xp  ·  #ai开源项目推荐# ... ·  昨天  
51好读  ›  专栏  ›  AI科技评论

机器学习与统计学的争论,有意义吗?

AI科技评论  · 公众号  · AI  · 2020-02-04 13:41

正文

请到「今天看啥」查看全文



当前许多人试图在统计方法和机器方法之间用二分法强硬的划定界限,但这显然是一种独裁的专制。有的人特别执着的认为:回归驱动的研究方法是统计学专属,无论如何不能称作机器学习。
此类观点其实比目前“逻辑回归等于计量经济学”的观点还要愚蠢,两者同样挑起了激烈的争论。
六十年来机器学习社区一直在致力于“更好的计算机”,而并不关心是奇妙的方法还是统计数据哪个更优。这也是为什么大多数教授在机器学习课程教学的时候,花大精力来教授广义线性模型及其变体。所以说统计学在机器学习和人工智能的研究背景下是非常有意义的,机器学习术语涉及不同的方法,并致力于让“程序”变得智能。
坦率地说,任何段位的统计学家都不能断言“脱离实际研究背景的统计学方法是有用的”。
回归方法归属之争其实在很大程度上同时低估了机器学习和统计,原因大致可以归纳为以下四个:
  • 限制了经典统计方法在构建计算机程序方面所能发挥的核心作用;
  • 忽略了机器学习对统计学的影响,实际上人工智能和计算机学科很大程度促进了统计学的复兴。例如Judea Pearl的因果关系开辟了新的统计学范式;
  • 统计学和机器学习之间“强硬”的二分法在一定程度上弱化了建模决策中的重要信息,并且这种分类有时候毫无意义。
  • 当前机器学习和统计学的顶级研究学者大多同时属于这两个领域。
其实,当前有很多研究都突出了统计学家与机器学习研究人员的丰富互动,例如著名学者Rob Tibshirani和Trevor Hastie没有纠结于方法论的边界线,而是利用机器学习研究人员开发的工具,从而帮助完善统计学领域的研究。 并不是说Hastie和Tibs发明了新方法,而是意味着这些方法已经影响了统计学家和机器学习研究人员的日常工作。

3、许多“争论”在开始之前就已注定失败


目标的不同导致了方法和文化的差异,这也是为什么“机器学习”一词的含义自诞生以来发生了如此大的变化。语言中的脱节让许多“争论”在开始之前就已注定失败。
如上文所述,机器学习这一研究领域之所以得以创立,便是由于计算机科学家试图创建和理解智能计算机系统,至今依旧如此。
主要的机器学习应用包括语音识别、计算机视觉、机器人/自动系统、计算广告、监控、聊天机器人等等。在尝试解决这些问题的过程中,机器学习研究者基本总是先从尝试经典的统计学方法开始,例如相对简单的广义线性模型(GLM)。
当然,长年累月,计算机科学家也不断提出了新的方法,让机器学习这一工具日益强大。
与其他任意背景下的进化一样,用于机器学习的统计学方法,其进化史也是在“物竞天择”的压力下所形成的。
与统计学家相比,机器学习研究者往往很少关注:理解算法背后所执行的所有具体动作。这一点其实非常重要,并且越来越重要。






请到「今天看啥」查看全文