正文
20世纪30年代,尼尔斯·玻尔和维尔纳·海森堡将随机性引入量子理论,而爱因斯坦多次对此提出质疑。自此,因果性就是一直量子力学中的一个关键问题。玻尔与海森堡构建的量子力学哥本哈根诠释坚持认为,量子测量,例如测量一个线偏振光子的偏振方向,其结果是随机的,并且只在测量的瞬间才被决定下来,我们也完全无法解释为何出现这个测量结果。1935年,爱因斯坦和他的助手鲍里斯·波多尔斯基、内森·罗森(根据其姓氏首字母,合称EPR)提出了一个著名的思想实验。他们利用玻尔对量子力学的解释,推导出了一个貌似不可能的结论。
EPR的思想实验中,A、B两个粒子处于相互影响的状态,也就是“纠缠态”。这里我们用自旋来举一个纠缠态的例子。自旋是粒子的一种量子特性,你可以把它想象成一个小磁铁,磁铁的N极就是自旋所指的方向。对于A、B两个粒子,如果 A的自旋朝上,则B的自旋一定朝下,反过来如果 A的自旋朝下,则B的自旋一定朝上。
在这样的纠缠态中,我们只有进行测量,才能够确定两个粒子究竟处于什么样的自旋状态。根据哥本哈根诠释,测量不仅仅让我们获知粒子的状态,还会使得粒子
“固定”在我们所测得的状态。而对于纠缠态的粒子,不论它们相距多远,对A的测量在固定了A的状态的同时,也固定了B的状态,仿佛在测量的瞬间,A与B之间产生了某种相互作用。爱因斯坦不能接受这种跨越遥远距离而瞬间发生的相互作用(即“超距作用”),因为这意味着相互作用的传递速度超过光速,违背了狭义相对论。爱因斯坦坚信,这一悖论源于哥本哈根解释不够完备。在测量之前,A、B粒子必定
已经有了明确的状态。
然而,随着实验手段的进步,科学家对纠缠态粒子进行实际测量后发现,粒子之间的关联性无法用
“粒子的状态在测量前就已经确定”来解释,但同时这种关联性又不违背狭义相对论,因为它并不能传递信息,不会导致信息超光速。那这种关联是怎样产生的呢?这确实很难用符合我们直觉的因果关系来解释。
乍看上去,哥本哈根诠释至少还保留有正常的时序逻辑:一次测量并不会影响到测量之前所发生的事件。如果事件
A要对事件B产生影响的话,那么A一定要先于B而发生。然而,最近十年间,这个最基本的时序逻辑也开始动摇。研究人员已经构想出了特定的量子情境,以至于我们无法判断关联事件中究竟是何者发生在前。
在经典物理中不可能有这样的情境。就算我们不知道甲乙谁先发生,它们也必定有一个先发生,一个后发生。而在量子物理中,不确定性不是由于我们没有获取足够的信息;这是一种根本上的不确定性,在测量之前根本就不存在所谓的
“实际状态”。
模棱两可的因果关系
许多物理学家已经开始初步尝试探索量子力学中模棱两可的因果关系,包括
Brukner的研究团队、Chiribella的研究团队等。他们精心设计了实验,其中包含相互关联的事件A与事件B,而我们无法判断究竟是A先发生,导致了B(亦即A是B的“原因”),还是B先发生,导致了A。实验中,A与B共同包含一定的信息,而信息的这种存在形式,与A、B之间明确的因果关系是互斥的。也就是说,正是由于A、B之间没有确定的因果顺序,研究人员才能够用量子系统做一些超出常规的事。
为了实现这一点,研究人员需要制备某种特殊的量子叠加态。一个粒子可以处于