正文
镍基变形高温合金在发动机中主要用于涡轮盘和涡轮叶片,温度范围一般在650°C-1000°C。
2.2.2. 镍基铸造高温合金
随着使用温度和强度的提高,高温合金的合金化程度越来越高,热加工成形越来越困难,必须采用铸造工艺进行生产。另外,采用冷却技术的空心叶片的内部复杂型腔,只能采用精密铸造工艺才能生产。
镍基铸造高温合金在发动机中主要用于涡轮导向叶片,工作温度可达1100°C以上,也可用于涡轮叶片,其所承温度低于相应导向叶片50-100°C。
2.2.3. 新型高温合金-
粉末冶金高温合金
随着耐热合金工作温度越来越高,合金中的强化元素也越来越多,成分也越复杂,导致一些合金只能在铸态上使用,不能够热加工变形。并且合金元素的增多使镍基合金凝固后成分偏析也严重,造成组织和性能的不均匀。
采用粉末冶金工艺生产高温合金,就能解决上述问题。因为粉末颗粒小,制粉时冷却速度快,消除了偏析,改善了热加工性,把本来只能铸造的合金变成可热加工的形变高温合金,屈服强度和疲劳性能都有提高,粉末高温合金为生产更高强度的合金产生了新的途径。
粉末高温合金主要用于制造高推比先进航空发动机的涡轮盘,也用于生产先进航空发动机的压气机盘,涡轮轴和涡轮挡板等高温热端零部件。
2.2.4. 新型高温合金-
单晶高温合金
采用定向凝固工艺消除所有晶界的高温合金称为单晶高温合金。
金属是由一个一个晶体组成。晶界是金属内部各种畸变,缺陷和杂质聚集的地带,晶界在常温下强度高于晶体内部,但高温时易产生滑移。当高温下晶界强度下降高于晶体内部时,金属强度会下降。因此,采用定向凝固技术消除晶界,得到的单晶高温合金性能极好。
目前,几乎所有先进发动机都已采用了单晶合金涡轮叶片或导向叶片。
2.3. 钴基高温合金:抗腐蚀等特殊领域前景广阔
钴基高温合金的抗氧化性能较差, 但其抗热腐蚀能力比镍好;钴基高温合金的高温强度、抗热腐蚀性能、热疲劳性能和抗蠕变性能也比镍基高温合金更强,适用于制造燃气轮机导向叶片、喷嘴等。
我国由于资源限制,目前研制了K40、GH188和L605等钴基合金,使用范围有限。
2001年以后,通用电气在钴基高温合金方面的研究主要集中在将钴基合金作为制备燃气涡轮机的基材材料,并在合金表面制备涂层如热障涂层以提高耐侵蚀性能。
联合工艺公司开发出的产品有镍基和钴基高温合金,其在高达约982.2℃仍具备很强的应力-断裂强度,特别适用于燃气轮机,特别是喷气式飞机发动机的叶片和叶片。但是其主要问题是它们在高温下受氧化和污染的影响增加,如果没有合适的涂层保护,最终会失效。
近年来,也涌现了许多新的钴基合金增材制造技术,如钴基激光增材制造技术、钴基电子束激光增材制造技术等。增材制造技术是一种融合了计算机、材料和三维数字建模等内容的高新技术。将增材制造技术和钴基高温合金实现有机结合,不仅能更便捷地制造出航空发动机中较为复杂的结构零部件,而且制造出的钴基高温合金零部件具有良好的耐热、耐磨和耐腐蚀性能。
由于材料方面的限制,钴元素在地球上储量较少,价格较为昂贵。
目前钴基研究的热度有所下降,很多科研研究也停留在数字建模试验等理论阶段。
3. 航空发动机用高温合金不断发展
军用航空发动机历经五代,推重比不断提升。
第一代涡扇发动机出现在 20 世纪 50 年代,以英国的康维发动机、美国的 JT3D 发动机为代表,推重比在 2 左右;第二代涡扇发动机出现在 20 世纪 60 年代,以英国的斯贝 MK202 和美国的 TF30 发动机为代表,推重比在 5 左右;第三代涡扇发动机出现在 20 世纪 70-80 年代,以美国的 F100、欧洲的 RB199和苏联的 AL-31F 发动机为代表,推重比在 8 左右;第四代涡扇发动机出现在 20 世纪 90 年代,以美国的 F119 和欧洲的 EJ200 发动机为代表,推重比在 10 以上;第五代涡扇发动机出现在 21 世纪初,以美国的 F135 和英、美联合研制的 F136 发动机为代表,推重比为 12-13。未来航空发动机推重比将不断提高,美国已经开启第 6 代航空发动机的研发,预计推重比将达到16-18。
由于涡轮理论效率仅与温度相关,要提升发动机推重比必须提升效率,要提升效率必须提升喷口温度。
发动机对温度的要求不断提升。
高推重比需要更高的喷口温度,需要工作温度更高的材料支撑。
在世界高温合金的发展历程中,发动机叶片和盘件材料分别经历了变形、铸造、定向、单晶四个阶段。适应温度从600°C逐步提升至1100°以上。
两片一盘是指航空发动机中的涡轮叶片、导向器叶片及涡轮盘(加篦齿盘),是整个发动机中性能最高的部件,代表着高温合金的最高工艺和最高要求。
在发动机的高压涡轮中,涡轮叶片与导向叶片交错排列,一级导向器紧接燃烧室出口,导向叶片处于高温燃气流包围中,是发动机中温度最高的零件之一,最高温度可达1150°C,温度高而且不均匀是其工作环境最重要的特点。涡轮叶片尤其是一级涡轮叶片承受着由燃烧室经一级导向叶片流入的高温燃气的冲刷,温度要求也极高,最高温度可达1100°C,同时处于复杂应力和腐蚀环境中工作。涡轮盘是连接涡轮叶片和涡轮轴的部件,虽然温度要求比涡轮叶片和导向叶片稍低,但是综合性能要求更高。材料须有强度高、疲劳性能优异、断裂韧性高、裂纹扩展速率低等优良性能。
最新发动机的两片一盘的制备,取用的都是最先进的高温合金材料。涡轮叶片和导向叶片的结构性材料以单晶高温合金和定向金高温合金为主。
由于叶片横截面都很薄,而横截面尺寸越小,蠕变断裂强度就越低,但是定向晶消除了易于形成裂纹的横向晶界,因此持久性能、冷热疲劳性能能及薄壁性能大幅提升,而单晶由于消除了一切晶界,性能改善更加明显,蠕变断裂强度降低幅度最小,因此是目前最能满足叶片工作要求的材料。
3.1. 叶片用高温合金:承温能力大幅提高
我国涡轮叶片用高温合金从变形合金逐渐升级到单晶合金。
20世纪50年代,第一代发动机的推重比为3-4,燃气温度为800-1050°C,涡轮叶片材料选用使用温度较低的变形镍基高温合金,其承温能力在700-900°C;20世纪70年代前后,第二代推重比5-6的发动机选用使用温度较同一成分变形高温合金高30°C左右的镍基铸造高温合金,其使用温度达950°C左右;到20世纪80年代,消除了横向晶界的定向凝固高温合金得到了广泛应用,其使用温度较同一成分等轴晶铸造合金高20-30°C,第四代发动机的叶片承温能力达980°C左右;20世纪90年代至21世纪初,第五代发动机采用了消除了一切晶界的镍基单晶高温合金,由于其使用温度又比定向凝固柱晶合金有进一步大幅度提高,最高温度可达1050-1100°C,因而得到了广泛应用。
目前我国在用的涡轮叶片单晶合金零件主要为DD403单晶实心涡轮工作叶片和DD406单晶高压涡轮空心工作叶片。
近年来,由于定向凝固工艺的发展,导向叶片也逐渐使用定向合金制作。
低成本,高性能的DZ404定向凝固合金及低成本、低密度、高熔点的JG4006定向凝固合计均在一些新机中作导向器叶片,取得良好效果。DZ640M是钴基定向合金,目前在FWS10发动机上作高压导向片。
国外导向叶片除了定向柱晶,还采用了第一代和第二代单晶高温合金
。单晶高温合金消除了一切晶界,性能改善更加明显,使用温度较定向凝固柱晶合金提高约30°C。