正文
main
import
(
"net/http"
"os"
"strings"
)
func
main
()
{
http.HandleFunc(
"/buy/ticket"
, handleReq)
http.ListenAndServe(
":3001"
,
nil
)
}
//处理请求函数,根据请求将响应结果信息写入日志
func
handleReq
(w http.ResponseWriter, r *http.Request)
{
failedMsg :=
"handle in port:"
writeLog(failedMsg,
"./stat.log"
)
}
//写入日志
func
writeLog
(msg
string
, logPath
string
)
{
fd, _ := os.OpenFile(logPath, os.O_RDWR|os.O_CREATE|os.O_APPEND,
0644
)
defer
fd.Close()
content := strings.Join([]
string
{msg,
"rn"
},
"3001"
)
buf := []
byte
(content)
fd.Write(buf)
}
我将请求的端口日志信息写到了 ./stat.log 文件当中,然后使用 AB 压测工具做压测:
ab
-n
1000
-c
100
http://www.load_balance.com/buy/ticket
统计日志中的结果,3001-3004 端口分别得到了 100、200、300、400 的请求量。
这和我在 Nginx 中配置的权重占比很好的吻合在了一起,并且负载后的流量非常的均匀、随机。
具体的实现大家可以参考 Nginx 的 Upsteam 模块实现源码,这里推荐一篇文章《Nginx 中 Upstream 机制的负载均衡
》:
https:
/
/www.kancloud.cn/digest/understandingnginx/
202607
回到我们最初提到的问题中来:火车票秒杀系统如何在高并发情况下提供正常、稳定的服务呢?
从上面的介绍我们知道用户秒杀流量通过层层的负载均衡,均匀到了不同的服务器上,即使如此,集群中的单机所承受的 QPS 也是非常高的。如何将单机性能优化到极致呢?
要解决这个问题,我们就要想明白一件事:
通常订票系统要处理生成订单、减扣库存、用户支付这三个基本的阶段。
我们系统要做的事情是要保证火车票订单不超卖、不少卖,每张售卖的车票都必须支付才有效,还要保证系统承受极高的并发。
这三个阶段的先后顺序该怎么分配才更加合理呢?我们来分析一下:
当用户并发请求到达服务端时,首先创建订单,然后扣除库存,等待用户支付。
这种顺序是我们一般人首先会想到的解决方案,这种情况下也能保证订单不会超卖,因为创建订单之后就会减库存,这是一个原子操作。
如果等待用户支付了订单在减库存,第一感觉就是不会少卖。但是这是并发架构的大忌,因为在极限并发情况下,用户可能会创建很多订单。
当库存减为零的时候很多用户发现抢到的订单支付不了了,这也就是所谓的“超卖”。也不能避免并发操作数据库磁盘 IO。
从上边两种方案的考虑,我们可以得出结论:只要创建订单,就要频繁操作数据库 IO。
那么有没有一种不需要直接操作数据库 IO 的方案呢,这就是预扣库存。先扣除了库存,保证不超卖,然后异步生成用户订单,这样响应给用户的速度就会快很多;那么怎么保证不少卖呢?用户拿到了订单,不支付怎么办?
我们都知道现在订单都有有效期,比如说用户五分钟内不支付,订单就失效了,订单一旦失效,就会加入新的库存,这也是现在很多网上零售企业保证商品不少卖采用的方案。
订单的生成是异步的,一般都会放到 MQ、Kafka 这样的即时消费队列中处理,订单量比较少的情况下,生成订单非常快,用户几乎不用排队。