正文
虽然FOWLP可满足更多I/O数量之需求。然而,如果要大量应用FOWLP技术,首先必须克服以下之各种挑战问题:
(1)
焊接点的热机械行为:
因FOWLP的结构与BGA构装相似,所以FOWLP焊接点的热机械行为与BGA构装相同,FOWLP中焊球的关键位置在硅晶片面积的下方,其最大热膨胀系数不匹配点会发生在硅晶片与PCB之间。
(2)
晶片位置之精确度:
在重新建构晶圆时,必须要维持晶片从持取及放置(Pick and Place)于载具上的位置不发生偏移,甚至在铸模作业时,也不可发生偏移。因为介电层开口,导线重新分布层(Redistribution Layer; RDL)与焊锡开口(Solder Opening)制作,皆使用黄光微影技术,光罩对準晶圆及曝光都是一次性,所以对于晶片位置之精确度要求非常高。
(3)
晶圆的翘曲行为:
人工重新建构晶圆的翘曲(Warpage)行为,也是一项重大挑战,因为重新建构晶圆含有塑胶、硅及金属材料,其硅与胶体之比例在X、Y、Z三方向不同,铸模在加热及冷却时之热涨冷缩会影响晶圆的翘曲行为。
(4)
胶体的剥落现象:
在常压时被胶体及其他聚合物所吸收的水份,在经过220~260℃迴焊(Reflow)时,水份会瞬间气化,进而产生高的内部蒸气压,如果胶体组成不良,则易有胶体剥落之现象产生。
此外,市场的发展也给FOWLP封装技术带来了一定的挑战。
根据麦姆斯咨询的一份报告显示。尽管扇入型封装技术的增长步伐到目前为止还很稳定,但是
全球半导体市场的转变,以及未来应用不确定性因素的增长,将不可避免的影响扇入型封装技术的未来前景。
随着智能手机出货量增长从 2013 年的 35% 下降至 2016 年的8%,预计到 2020 年这一数字将进一步下降至 6%,智能手机市场引领的扇入型封装技术应用正日趋饱和。尽管预期的高增长并不乐观,但是智能手机仍是半导体产业发展的主要驱动力,预计 2020 年智能手机的出货量将达 20 亿部。
除了台积电之外,STATS ChipPAC(新加坡星科金朋)将利用JCET(江苏长电科技)的支持进一步投入扇出型封装技术的开发(2015年初,江苏长电科技以7.8亿美元收购了新加坡星科金朋);ASE(日月光集团)则和Deca Technologies建立了深入的合作关系(2016年5月,Deca Technologies获日月光集团6000万美元投资,日月光集团则获得Deca Technologies的M系列扇出型晶圆级封装技术及工艺授权);Amkor(安靠科技)、 SPIL(矽品科技)及Powertech(力成科技)正瞄准未来的量产而处于扇出型封装技术的开发阶段。三星看上去似乎有些落后,它正在抉择如何参与竞争。
TechSearch International总裁Jan Vardaman指出,在iPhone 7内部,主要的印刷电路板(PCB)上包含了43种其他晶圆级(wafer-level)封装,照明电缆和耳机上亦有采用此技术。
联发科和海思的应用处理器(AP)也将跟进采用先进的封装方式,其他业者如大陆手机厂Oppo和Vivo也已经采用其他更新颖的技术。新的封装技术如雨后春笋般出现,重点均在于多元异质模组整合(heterogeneous integration),因为主机板空间越来越壅挤,芯片封装必须设法缩小尺寸。
在琳琅满目的新技术中,扇出型晶圆级封装(fan-out wafer-level packaging;FOWLP)运作了近10年之后,现在已成为移动市场的首选。第一代扇出型封装是采用英飞凌(Infineon)的嵌入式晶圆级球闸阵列(eWLB)技术,此为2009年由飞思卡尔(Freescale,现为恩智浦)所推出。