正文
本届 ISSCC 会议于 2017 年 2 月 5-9 日举行,为第 64 届。
近年来,ISSCC 大会上的论文涉及的集成电路领域包括九个方面:模拟电路(传统模拟电路、模拟电源管理)、数据转换器(ADC/DAC/TDC)、数字架构与系统(处理器、通信与多媒体电路、人工智能)、数字电路(时钟、数字电源管理)、IMMD(图像、MEMS、生物医学、显示)、存储器(存储单元、控制器)、射频与无线系统(收发机、毫米波、太赫兹)、有线通信(SerDes/2.5/3D 互联)以及前沿工艺设计(非硅集成电路、量子、柔性材料)。
大会议程
在上周日晚举行的 Tutorial 和 Student Session 上,IEEE SSCS(固态电路协会)进行了 Fellowship 颁奖,随后是 Student Research Preview 的 Poster 展览(这些都是 ISSCC 主 session 的遗珠)。周一上午为 Plenary Speech,由主办方邀请领域领头人物演讲。很多来自半导体业、或半导体相关行业的重要嘉宾参与其中。
本届请到的嘉宾包括:
-
台积电的 VP Cliff Hou(演讲主题是结合封装和 SoC 技术的芯片新范式)
-
德州仪器的 CTO Ahmad Bahai(演讲主题是集成电路业的持续创新模式)
-
哈佛医学院教授 Jonathan Rothberg(演讲主题关于 DNA 测序)
-
TU Delft 的教授 Lieven Vandersypen(演讲主题关于量子计算)
周一下午到周三为一系列主 Session 论文报告,晚上有一些有趣的 evening session,周四为专业论坛。
在智能硬件的风潮中,很多研究机构推出了自己的新型芯片设计。2016 年 ISSCC 中,韩国科学技术院(KAIST)曾展示了自己的深度学习处理器,这种处理器已经广泛应用于很多领域,如用于 AR/HMD 用户的自然 UI/UX、辅助汽车驾驶和自主导航的微型机器人。以 65nm CMOS 实现了具有嵌入式深度学习引擎的低功耗自然 UI/UX 处理器,达到了比最新的 HMD 处理器还高 56.5%的能源效率,比同类最佳模式识别处理器的识别率还要高 2%。而麻省理工学院(MIT)提出了在 65nm CMOS 工艺中实现高能效的深度卷积神经网络(CNN)加速器。该测试芯片具有由可重构在片网络的 168 个处理元件空间阵列的特征,其通过开发数据再使用来处理多种形状并最小化数据运转。
围绕人工智能带来的新需求,硬件设计也需要转换思路。2 月 5 日上午,来自比利时鲁汶大学的 Marian Verhelst 的报告就介绍了为深度学习设计的处理器。