正文
对人脸进行检测SeetaFace Detection
人脸检测模块SeetaFace Detection基于一种结合经典级联结构和多层神经网络的人脸检测方法实现,其所采用的
漏斗型级联结构(Funnel-Structured Cascade,FuSt)
专门针对多姿态人脸检测而设计,其中引入了由粗到精的设计理念,兼顾了速度和精度的平衡。如图1所示,FuSt级联结构在顶部由多个针对不同姿态的快速LAB级联分类器构成,紧接着是若干个基于SURF特征的多层感知机(MLP)级联结构,最后由一个统一的MLP级联结构(同样基于SURF特征)来处理所有姿态的候选窗口,整体上呈现出上宽下窄的漏斗形状。从上往下,各个层次上的分类器及其所采用的特征逐步变得复杂,从而可以保留人脸窗口并排除越来越难与人脸区分的非人脸候选窗口。
图1. SeetaFace人脸检测模块所采用的FuSt漏斗型级联结构
与SeetaFace Detection开源代码配套开放的是一个准正面人脸检测模型(使用了约20万人脸图像训练而来),可以实现准正面人脸的准确检测(旋转角度约45度以内,但对于姿态偏转较大的人脸也具备一定的检测能力),图2给出了一些检测结果的示例(注:测试时图像金字塔下采样比例设置为0.8,滑动步长设置为4和2,最小人脸设置为20x20)。
在人脸检测领域最重要的评测集FDDB上对SeetaFace Detector进行评测,在输出100个误检时(FPPI=0.035)召回率达到84.4%,输出1000个误检时召回率达到88.0%。图3则给出了SeetaFace Detector在FDDB上的离散型得分ROC曲线,并与其它已发表的学术界公开结果(从FDDB官网获得)进行了对比。不难看出,尽管SeetaFace人脸检测器并非目前精度最高的,但在学术界公开的结果中仍然具有很强的竞争力,而且可以完全满足多数人脸识别系统的需求。
图2. SeetaFace Detection人脸检测结果的示例
图3. SeetaFace Detector在FDDB上的ROC曲线
此外,与其他算法相比SeetaFace Detector在速度上有一定优势。对于640x480大小的VGA图像,检测速度的对比情况如表1所示。其中,SeetaFace的速度在单个3.40GHz的i7-3770 CPU上测得,Cascade CNN在CPU上的速度在2.0GHz的CPU上测得(引自原文)。而各方法在GPU上的速度在NVIDIA Titan Black GPU上测得。
表1. SeetaFace Detector的检测速度及其与其他方法的对比情况
注:测试时SeetaFace Detector的滑动窗口步长设置为4,图像金字塔下采样步长设置为0.8。而Cascade CNN中图像金字塔下采样步长为0.7(对应的尺度因子为1.414)。