正文
随着人类对自然界生物结构了解与认识加深,通过材料与结构设计仿生大自然技术也日趋成熟,推动了刺激响应仿生材料的发展。张利东指出:“近年来,基于刺激响应仿生材料研发的器件已经在工业、医疗、电子、军事等领域得到了较好的应用。”
杜学敏说:“在未来,仿生软材料应用价值将更加巨大,特别是在柔性电子工业,仿生传感器,软体机器人等方面将拥有广阔的前景。”然而,当前在刺激响应材料仿生结构模拟上还存在诸多技术难题。
张利东透露,现有的理论分析认为,要实现高效可控的仿生性能,除了对材料仿生结构的精确设计之外,材料不仅要具有非常好的拉伸耐磨性能、对外界长时间刺激后仍能保持理想的机械性能,还必须具有可逆的刺激响应行为,这些是刺激响应型仿生材料实现仿生性能的基本要素,也是拓展其应用的基本条件。
杜学敏称:“只有设计合理的仿生结构、深入理解仿生机理、优化材料机械性能,才能控制动态仿生过程、促进材料的应用步伐。”
张利东课题组开展的柔性智能双层膜的仿生性能机理研究,与杜敏学课题组开展的探索仿生智能材料研究不谋而合。
“不知疲惫”地运动
双方科研团队以廉价易得的高分子材料为研究对象,张利东课题组提出了双层膜设计理念,通过对材料简单的复合改性,制备了具有自驱动性能的高分子双层膜,并设计了各种柔性器件;杜学敏课题组基于光刻蚀技术,制备了带有微孔道结构的硅模板。