专栏名称: 人工智能头条
专注人工智能技术前沿、实战技巧及大牛心得。
目录
相关文章推荐
爱可可-爱生活  ·  【R1:一个为强化学习训练提供增强版GRPO ... ·  昨天  
爱可可-爱生活  ·  【[90星]torchvista:用一行代码 ... ·  昨天  
黄建同学  ·  写的不错 ... ·  2 天前  
51好读  ›  专栏  ›  人工智能头条

CCAI 2017 | 漆远:蚂蚁金服 AI 技术大揭秘, 开放“模型服务平台”

人工智能头条  · 公众号  · AI  · 2017-07-23 14:23

正文

请到「今天看啥」查看全文


今天讲几个例子,从例子出发讲讲背后的技术。在这之前,我先讲讲蚂蚁金服现在的两个关键词。蚂蚁金服我们定位为Techfin,而科技公司的一个核心的是什么?是AI。所以今年蚂蚁金服两个关键词,一个是“开放”,一个是“AI”,我们希望通过AI驱动所有的业务,同时作为科技公司,我们技术成熟一个开放一个,所以下面探讨的技术也是探讨如何开放给伙伴。


安全风控


首先是在安全风控中,里面有用户、设备、商家,他们之间通过资金流动形成互联。传统的风控技术中我们建立了很多的规则和模型。蚂蚁金服过去十年通过使用大量的机器学习建立强大的风控系统。但是今天我们希望进一步地升级风控系统。比如说可信模型,我们想判断有一笔交易是否存在账号被盗。而这里面我们使用了一个跨界的技术,其实就广告CTR预估的技术。 在2014年Facebook广告算法的文章中, 讲的是GBDT+逻辑回归。使用我们开发的参数服务器技术,我们把逻辑回归换成了大规模深度学习,使用到风控里面: 通过GBDT产生特征,然后DNN继续学习。 因为在风控里面很多特征我们无法判断哪些有用哪些没有用,我们用GBDT产生海量特征然后把这些特征feed给深度学习模型。


前面是说我们把GBDT和DNN结合起来考虑风控。深度学习往下走,我们也考虑关系,用户、商家、卖家等的关系,下面我举一个例子,我们通过embedding技术,把整个关系结合起来,形成图形网络,然后进行监督学习、加强学习。


给大家看看例子,比如说支付宝账号的账户(行为),我们一个网络有好人、坏人,有设备比如说手机、计算机,iPad等,我判断今天这个人是否注册一个垃圾账号特别简单。我们可以把整个的图关系通过一个embedding的技术产生一个深度学习的网络,通过机器学习产生一个隐层表达,这个表达不光涵盖了每个节点自身复杂的特征,同时还对网络结构做了一个encoding。在垃圾账号的识别上,在经典的Recall-Precision曲线中,Precision越高越好,接近1就是完美。原来的规则是不具可采信的,现在我们对图使用embedding技术后有一个质的飞跃,Recall在70%、80%的时候,Precision达到90%,而原来的算法Precision在40%几,这基本相当于瞎猜。这个和以前的系统相比,Node2Vec也是非常先进了,我们在此基础上又做出了明显的提升。


将图的关系和Feature结合起来,可以产生非常Power的模型,用在我们的模型里面。通过广告的算法提升了系统,我们进一步学习,将深度学习和图模型结合起来,可以融合网络关系与复杂特征。


智能助理


下面讲讲另外一个方向,在过去的很多年,不管是中国还是美国,讲起智能助理和机器人都是非常热的话题。这里对话很关键,在蚂蚁金服初始的对话从客服机器人开始,如果你使用支付宝,打开客服小蚂答可以问各种各样的问题,例如你问余额宝收益怎么算,他就给你一个这样一个答复,提供工具输入金额并计算。然后还有财富的理财渠道,你问某个企业业绩怎样就会开始进行舆情分析,舆情分析在金融里面非常多的应用,我们可以自动分析,海量的舆情在中国国内,为月新闻、周新闻相应地打出舆情分。


下面讲两个技术,在对话机器人里面,在客服里面,假如问了这句话我怎样申请退钱回来,它是没有场景的。在问答系统中要理解它,就要真正知道在问什么,我们可以根据用户的近期操作,这些操作本身就提供了一个背景和场景。我们通过LSTM对用户行为轨迹做一个编码,然后整个模型是一个深度排序模型,比较哪个更相似,通过LSTM建立模型,把怎样申请退钱回来的用户问题,和转账转错怎么办和为什么银行卡转账被退回来,这两个进行答案匹配。我们给出正确的选择转账到账户错了怎么办。这里有一系列的创新。这些创新今天不一一讲。最后的结果,去年双十一智能客服自助率做到97%。同时今年我们问题解决率超过了人工客服,机器人回答问题比人回答更为满意。







请到「今天看啥」查看全文