专栏名称: 好玩的数学
好玩的数学以数学学习为主题,以传播数学文化为己任,以激发学习者学习数学的兴趣为目标,分享有用的数学知识、有趣的数学故事、传奇的数学人物等,为你展现一个有趣、好玩、丰富多彩的数学世界。每周还有三道题等着你来挑战!
目录
相关文章推荐
超级数学建模  ·  限时领 | ... ·  12 小时前  
超级数学建模  ·  胖*来线下断货王,15年的老牌子你就闭眼买吧~ ·  12 小时前  
超级数学建模  ·  穿溯溪鞋上班的年轻人,你惹不起 ·  昨天  
超级数学建模  ·  陈省身:三角形内角和不等于180° ·  2 天前  
51好读  ›  专栏  ›  好玩的数学

关于数独的文化史和一些数学问题

好玩的数学  · 公众号  · 数学  · 2017-05-26 08:30

正文

请到「今天看啥」查看全文




Felgenhauer的算式为9!×722×27×27,704,267,971,最后的数字是一个大质数。虽然这个天文数字已经足够惊人,但考虑到作为一种特殊限制的拉丁方, 数独终盘的可能性只是可能存在的九阶拉丁方数目的0.00012%!



另一个方面,考虑到数独游戏的初始数字对称要求,以上结果可能有相当程度的重复,亦即其终盘结果会出现大量的雷同。据此,英国数学家FrazerJarvis和EdRussell给出了更准确的不同终盘数:5,472,730,538。这样一来,有志于破解所有数独题目的玩家又看到了希望的曙光,担心游戏被穷尽而没有游戏可玩的爱好者也不必焦虑:毕竟这个数目和地球人口一样多。


3 最小初盘问题


与终盘相对应,一个数独游戏给出的初始条件称为初盘。


一般常见的初盘数字个数在22—28之间,而数独爱好者们常问的一个问题是:最少给出多少个数字,数独游戏才确保有惟一解?具体地说: 最少需要在初盘中给出多少个数字,使得移除其中任何一个数字该数独游戏便没有惟一解。



事实上,这个问题是数独中最有数学趣味的问题之一,并且长时间以来未得到解决。但当时数学家们估计,这个数字很可能是17。17个数字的最小惟一解初盘是由一名日本数独爱好者提出的。澳大利亚数学家GordonRoyle已经收集了36628个17个数字的惟一解初盘,而爱尔兰数学家Gary McGuire则致力于寻找16个数字的惟一解初盘,但至今仍无发现。部分数学家开始退而求其次,转而寻找只有两个解的16个数字初盘。








请到「今天看啥」查看全文