专栏名称: DBAplus社群
围绕数据库、大数据、PaaS云,顶级大咖、技术干货,运营几个月受众过十万!成为运维圈最专注围绕“数据”的学习交流和专业社群!欢迎投稿,加入探讨。
目录
相关文章推荐
数据中心运维管理  ·  施耐德电气PowerLogic™ ... ·  16 小时前  
数据中心运维管理  ·  6月1日起实施!我国首部绿色数据中心评价国标 ... ·  昨天  
数据中心运维管理  ·  应急预案和应急演练到底怎么做? ·  16 小时前  
51好读  ›  专栏  ›  DBAplus社群

只能用分布式锁,也能搞定每秒上千订单的高并发优化?

DBAplus社群  · 公众号  · 数据库  · 2020-12-04 07:15

正文

请到「今天看啥」查看全文



同一个锁key,同一时间只能有一个客户端拿到锁,其他客户端会陷入无限的等待来尝试获取那个锁,只有获取到锁的客户端才能执行下面的业务逻辑。



代码大概就是上面那个样子,现在我们来分析一下,为啥这样做可以避免库存超卖?



大家可以顺着上面的那个步骤序号看一遍,马上就明白了。从上图可以看到,只有一个订单系统实例可以成功加分布式锁,然后只有他一个实例可以查库存、判断库存是否充足、下单扣减库存,接着释放锁。


释放锁之后,另外一个订单系统实例才能加锁,接着查库存,一下发现库存只有2台了,库存不足,无法购买,下单失败。不会将库存扣减为-8的。


有没有其他方案可以解决库存超卖问题?


当然有啊!比如悲观锁,分布式锁,乐观锁,队列串行化,异步队列分散,Redis原子操作,等等,很多方案,我们对库存超卖有自己的一整套优化机制。


但是前面说过了,这篇文章就聊一个分布式锁的并发优化,不是聊库存超卖的解决方案,库存超卖只是一个业务场景而已。


分布式锁的方案在高并发场景下


好,现在我们来看看,分布式锁的方案在高并发场景下有什么问题?


问题很大啊!兄弟,不知道你看出来了没有。分布式锁一旦加了之后,对同一个商品的下单请求,会导致所有客户端都必须对同一个商品的库存锁key进行加锁。


比如,对iphone这个商品的下单,都必对“iphone_stock”这个锁key来加锁。这样会导致对同一个商品的下单请求,就必须串行化,一个接一个的处理。大家再回去对照上面的图反复看一下,应该能想明白这个问题。


假设加锁之后,释放锁之前,查库存 -> 创建订单 -> 扣减库存,这个过程性能很高吧,算他全过程20毫秒,这应该不错了。


那么1秒是1000毫秒,只能容纳50个对这个商品的请求依次串行完成处理。比如一秒钟来50个请求,都是对iphone下单的,那么每个请求处理20毫秒,一个一个来,最后1000毫秒正好处理完50个请求。


大家看一眼下面的图,加深一下感觉。



所以看到这里,大家起码也明白了,简单的使用分布式锁来处理库存超卖问题,存在什么缺陷。


缺陷就是同一个商品多用户同时下单的时候,会基于分布式锁串行化处理,导致没法同时处理同一个商品的大量下单的请求。


这种方案,要是应对那种低并发、无秒杀场景的普通小电商系统,可能还可以接受。因为如果并发量很低,每秒就不到10个请求,没有瞬时高并发秒杀单个商品的场景的话,其实也很少会对同一个商品在一秒内瞬间下1000个订单,因为小电商系统没那场景。


如何对分布式锁进行高并发优化?







请到「今天看啥」查看全文