专栏名称: 返朴
溯源守拙·科研鼎新
目录
相关文章推荐
超级数学建模  ·  全国各地高考难度地图:上大学最难的省份到底是 ... ·  7 小时前  
超级数学建模  ·  现在的成年人根本想不到,两位数能买到多惊艳、 ... ·  12 小时前  
超级数学建模  ·  任何人都拒绝不了这款包包,非得有个拒绝的理由 ... ·  20 小时前  
超级数学建模  ·  那些奇奇怪怪的男性用品...... ·  2 天前  
超级数学建模  ·  这才是正常物价!几十块,买到绝美手工草编包! ·  2 天前  
51好读  ›  专栏  ›  返朴

“错误”观念也有用:摩尔根和现代遗传学的起源

返朴  · 公众号  ·  · 2020-05-01 08:00

正文

请到「今天看啥」查看全文


(RR) ,另一种是杂合体 (RW) ;但是对于雄果蝇有两种基因型和两种表型:红眼雄果蝇是杂合体 (RW) ,白眼雄果蝇是纯合体 (WW) 。现在摩尔根左右为难,他完全知道“为了获得这样的结果,必须假设……当F1代雄性红眼果蝇 (RWX) 形成两类精子的时候,R和X在一起,否者结果就不符合 (如图所示) ”。在最后,摩尔根假设R和X总偶联在一起,把眼色因子和X染色体看作是独立的实体。也许他已经考虑用其他方法描述杂交结果,但此时他还沿用以上符号,并把眼色和性别看作独立的因子。

承认R和X偶联在一起给摩尔根制造了问题:一方面是为什么F1代红眼雄蝇中这两个因子永远一起分离?显然摩尔根对这个假设感到不舒服,因为这明显是临时的:这是用来解释为什么他在F2代中没有找到白眼雌果蝇的。在1910年,威尔森甚至建议摩尔根,最简单的解释就是假设眼色因子与X染色体在物理上相联系。但是摩尔根觉得这种观点还是太过臆测。他开始改变想法了,但是此时他还不能彻底赞同。

那个夏天,培养中出现了更多的突变体,出现了残翅、袖珍翅和黄身这些像白眼一样是“性别限定”的性状。新发现的很多限性遗传性状,让威尔森建议的简明解释——这些神秘的性状,独立地与X染色体一起分离——变得很难想象。另一方面,如果它们确是X染色体上的一部分,就顺理成章地解释了为何与性别相关联。因此摩尔根心中产生了染色体上具有多个孟德尔因子的想法。所以,1915年摩尔根发展了伴性遗传的想法,而且扩展到了更广泛的联系,让他用新的方式标示白眼果蝇杂交 (图2)

图2 在这个示意图中,不同于之前的版本,颜色因子直接与X染色体实体相联系。黑色染色体携带红眼因子,白色染色体携带白眼因子。Y染色体此时已经被证实,用Y来标识,上端弯曲 (Morgan et al. 1915: p. 17) 。


02

更多数据:发现连锁与互换



此时的摩尔根接受了孟德尔遗传和染色体理论,以及二者实体上相互关联的判断。但他面临着另一个早就广为人知的动植物育种问题,包括达尔文本人也困惑不解:为什么相互连锁的两个性状,偶尔也会被分开,或者说打断,后代中两个性状就不会再一起出现,但是可能会重新组合 (AB和ab的组合偶尔会产生出Ab和aB)

1906年,英国的威廉·贝特森发表了有关这一问题的报告,他用香豌豆为材料进行实验 (Bateson 1906) 。花的颜色蓝色(B)相对红色(b)是显性,花粉外型长(L)相对于圆(l)是显性,而花的颜色与花粉外型表现出连锁关系,所以BL纯合体与bl纯合体杂交后 ,F1代表型应该全部是蓝花、长花粉,但是它们应该都是杂种或者说杂合体(BbLl)。F1代的杂合体自交,F2代大多数 (87.4 %) 是连锁的,表型像它们的祖父辈一样,也就是蓝长和红圆,但是也有小部分 (12.6 %) 是重组的,也就是蓝圆和红长。像摩尔根一样,贝特森也怀疑染色体学说,他提出了更复杂的“吸引与排斥” (attraction and repulsion) 理论来解释这种现象。摩尔根认为贝特森的想法都很复杂,而且没有任何实际支持。

图3 1909年比利时细胞学家詹尼斯在论文中描述的,不同阶段的染色体交叉(准确的说应该是同源染色体对复制后,四分体状态的姐妹染色单体)。詹尼斯认为在姐妹染色单体交叉的地方,可能发生同源染色体之间的断裂和重连,产生包含着父母双方的互补片段的姐妹染色单体。(仿自詹尼斯,摩尔根发表于1913: p. 93)


就在这个时候,威尔森又一次为故事提供了关键情节:他让摩尔根关注比利时细胞学家佛朗斯·阿方斯·詹尼斯在1910年发表的文章。文中数据展示了减数分裂前期纠缠在一起的染色体 (图3) 。对于摩尔根来说,詹尼斯的图暗示了,在缠绕之前,同源染色体之间 (已经完成复制的姐妹染色单体) 会发生断裂,同源的末端会重连,这为同一染色体上的因子之间解偶联和重组提供了解释 (图4) 。他很快意识到,两个孟德尔因子在染色体上是分离的,在两者之间经常会发生断裂,因此会在后代中表现出很大比例的重组表型。之前20年间积累的对染色体以及染色体运动的实际观察,为解释遗传机制提供了基础。这种机制不需要发明离奇的吸引和排斥: 连锁和互换都可以用同样的机制解释,而且与已知的染色体结构和功能相符合。细胞学和育种这两条线的证据汇集在一起,造就了1915年著名的“孟德尔-染色体遗传理论”。

图4 表示同源染色体(更确切的说是姐妹染色单体)联会的示意图,摩尔根1915, a和 d姐妹染色单体交换了同源部分; b 和 c表示了由单个基因组成的染色体。黑白两色分别代表同源染色体来自亲本中的父方母方 (Morgan et al. 1915: p. 60) 。


在这一时期,摩尔根意识到他一个人跟不上快速增长的果蝇研究工作了,于是开始培养有天赋的本科生。在他实验室日后毕业的学生中,有三人最为著名:阿尔弗雷德·斯特蒂文特、卡尔文·布里奇和赫尔曼·穆勒。摩尔根越来越依赖这些学生从事日常工作,去揭示业已结合在一起的孟德尔-染色体范式之间的内在联系。举个例子,1911年,摩尔根与斯特蒂文特讨论重组频率与染色体上两个基因间距离的问题时,遗传图谱的想法诞生了。斯特蒂文特回忆,当晚他回家后,彻底被这个想法迷住了,忘记了写家庭作业,并绘制了第一幅染色体图谱:染色体上连锁的6个基因 (Sturtevant 1965: 47) 。之后染色体图谱绘制工作迅速展开,最终在果蝇四对染色体上定位了数百个基因。



“孟德尔-染色体”范式的建立



摩尔根的学生组成了充满热情的团队,推动染色体图谱工作,并开始详细阐述一整套遗传法则,拓展和澄清了孟德尔主义模型,延伸到了更多的问题,比如基因-基因相互作用 (上位效应,epistasis) 、基因多效性 (pleiotropy) 、染色体突变 (插入、移位) 、性别决定的染色体机制 (布里奇) 、同一位点的复等位基因 (斯特蒂文特) ,以及最终的人工诱变 (穆勒) 。在20世纪前30年, 孟德尔-染色体理论,以及与其相联系的染色体图谱技术带来的众多问题,把遗传学推到了生物学最重要的前沿领域。

图5 1919年夏天,在马萨诸塞的伍兹霍尔海洋生物学实验室,摩尔根和几个实验室成员讨论实验结果。|供图:伊莎贝尔·摩尔根·蒙坦


果蝇研究还是现代生物学中实验室团队研究的代表。从社会学角度来看,这是一段很有意思的历史。在1911-1915年间,团队像一个整体,工作气氛和关系是很开放和自由的,日后的内部争斗还未露端倪。大家很享受夏天在MBL开的实验室聚会和非正式“实验室会议” (图5) 。实际上,他们第一次推动了新的科学研究形态—团队研究。在19世纪和20世纪早期,生物中的科学研究工作主要由个人进行研究。论文和专著都由一个研究者撰写,多个共同作者的情况比较少见。绝大多数欧洲实验室受正统规则主导,等级分明。摩尔根的研究组则打破了常规,以更加自由流动的方式运作,老师参与少,由学生做主。

1915年,研究团队的成果首次完整地总结在《孟德尔遗传机制》一书中,作者是摩尔根、斯特蒂文特、布里奇和穆勒。这本书现早已经成为经典,写作精炼,插图精美,被翻译为多种语言,使得遗传学研究中的新成果引起了全世界的关注。

随着绘制遗传图谱的工作的深入,孟德尔因子与染色体之间的关系越来越清晰。在果蝇中出现了四个连锁群,与染色体对数一致,说得更明白一些,就是每对染色体的实际大小与遗传因子数量大致相同 (图6) 。事实上,这种关系变成了最强的一条证据,让任何怀疑者都相信基因就是染色体上的实体部分。在上世纪20年代末期和30年代,康奈尔大学的罗林斯·埃莫森在玉米中,哈佛大学的凯斯特利在老鼠中都建立了连锁群。20世纪上半叶,孟德尔-染色体理论已经成为了经典遗传学的基础。

图6 早期(1915)果蝇四个连锁群的染色体图谱示意图。染色体从左到右依次为I (X染色体), II, III and IV号染色体。连锁群的数量由杂交结果确定,与细胞学观察到的染色体对数目一致, (来自摩尔根 Morgan et al. 1915: 封面插图) 。


大约在《孟德尔遗传机制》一书出版的时候, 摩尔根第三次改变了立场,开始接受这种作用于小的、不连续的孟德尔变异的自然选择,当作重新流行起来的达尔文演化观念的基础 。在他的《进化论评论》一书中,摩尔根指出不连续的变异,以及由不同基因相互作用产生的一系列梯度变异 (称之为数量遗传) ,是自然选择发生作用的微小个体差异的来源 (Morgan 1916: pp. 85–87) 。很多年后,据穆勒回忆,他和实验室的其他人同摩尔根争论过演化问题,最后摩尔根认同孟德尔式变异可以为演化提供原始材料 (Allen 1968: pp. 135–137) 。这一认识,移走了摩尔根对于自然选择看法中最后一块绊脚石。虽然没有像后来建构综合进化论的罗纳德·费舍尔或者休厄尔·赖特那样提出数学公式,但是在选择作用于微小的不连续遗传突变上,摩尔根的观点与他们一致,认为在传给下一代时突变的数量可以增加或减少。



对教育的启示



在这篇文章中,我着重强调了1900-1916年之间,摩尔根早期研究中的几个特点,这些特点展示了:(1)在任何科学发展过程中,那些被 (同时代或者后来者) 认为是走了弯路或者错误的观点的重要性,以及向学生讲授这些观点的价值;(2) 科学是个社会过程,发生在特定时间、地点和特定的社会-经济背景下。科学家们在研究工作中,除了单纯的“发现真理”,还有着各种的现实目的。

有关第一点,我们已经看到,在概念上,摩尔根对于自然选择、染色体遗传理论和孟德尔的遗传传递模型上一开始都做出了错误的评价,但是他都有充分的理由。对于摩尔根来说,孟德尔理论和染色体学说不仅是反映了早期的、被抛弃的胚胎学预成论的回光返照,而且回避了最重要的问题。 对于摩尔根这样的胚胎学家,胚胎发育过程中这些性状是如何产生的才是最重要的问题。这个问题仍然是今天的生物学最前沿的问题,构成了新兴的演化发育生物学(evo-devo)领域的核心。

关于第二点,20世纪头十年中,摩尔根是年轻生物学家中的领袖,他想把生物学带出形态学臆测的困境,构建在像物理化学一样坚实的基础上。 摩尔根和其他科学家想要在仍被物理学统治的领域中争取到合理的一席之地的努力,是生物学发展历史上至关重要的部分。

以上这些该如何帮到今天实际的生物学教学中呢?最简单的一级是,好的科学家会承认错误,改变自己的观点,实际上,这也是科学作为人类活动的一种力量体现。更高一级地说,这些案例可以促进对本文讨论的三种理论的理解,通过列举各种摩尔根的反对意见,让学生用对这些问题的现有理解,做出自己的回答。这种方法必然会引起很多讨论。这会强化这样的观点——知其然,也知其所以然。直面这些理论的反对意见,可以帮助学生更加深刻地理解那些如今我们自认为了解的东西。

在关于摩尔根的案例中,我试图展示出科学像流水的一面,科学没有固定的方法或者路径。如果能为学生展现一个动态的过程,错误的理论也会像正确的一样有用。这样在我们为下一代人展现科学时,会更加令人激动,更加娴熟自如。

注释

[1] 虽然1900年以后,差不多所有胚胎学家都已经拒绝了18世纪早期的预成论,但是它仍然像飘荡在野地的鬼魂,一旦有机会,随时准备借尸还魂。
[2] 鲍维里用实验确定个体特征的想法非常天才:在海胆卵的培养皿中加入高浓度精子,可以出现双受精的卵。在这些双受精个体中有丝分裂的染色体分布是不正常的,挑选出后,继续发育,会产生不同种类的畸形,畸形的种类取决于哪条染色体缺失。特定的胚胎生理畸形和缺失特定染色体之间的有规律联系,让鲍维里相信,用他自己的话来说,“正常发育所需的不是确定的染色体数目,而是染色体的特定组合,这无异于说明了每个单独的染色体一定具有不同的特性。”(鲍维里1902,沃勒尔1968年翻译重印)
[3] 那时仍不知道果蝇雄性个体有Y染色体;在很多种类的昆虫中,雄性是XO,而雌性是XX,所以认为果蝇也是这样(参见图1,摩尔根在1913年的早期性别限定的标识方式)。到了1915年,已经清楚雄性果蝇确实有Y染色体,应该标识为XY。

本文编译自 Garland E. Allen, How Many Times Can You Be Wrong and Still Be Right?
T. H. Morgan, Evolution, Chromosomes and the Origins of Modern Genetics,Sci & Educ.
DOI 10.1007/s11191-013-9664-8

《返朴》新冠病毒专题


上下滑动可见全部报道






请到「今天看啥」查看全文