正文
(置零)
”,然后制备到“输入态”,接着经过一系列的量子门
(算法)
,得到“输出态”,最后测量这些输出态,就得到了计算结果。看,量子计算多简单!
简单归简单,但里面有两个关键,首先量子门要足够准确,其次测量要足够准确。量子态可不是乖孩子,你给它拍第一张照片时,它会瞪大眼睛,拍第二张的时候却吐着舌头,再想拍一张,影子都没了!想让它们乖乖的,就得使用“定身术”。这个“量子定身术”的魔法,就是所谓的“量子非破坏测量”了。
量子非破坏测量
(Quantum Non-demolition measurement,简称QND测量)
带有较强的误解性,因为它并不是“非破坏”的——量子力学基本原理不能违背,该塌缩还是得塌缩的。那它的妙处在哪呢?QND测量的妙用在于,第一次测量之后量子态会随机投影到某一个测量算符的本征态上去,但随后量子态会一直保持在这个态
(除了一个平庸的相位演化以外)
,如此一来,第二次、第三次以及之后的测量,还能给出与第一次相同的结果。这给了测量者很大的空间,有了这种“定身术”,测量者就能通过增加测量次数或累加测量时间来获得更高的信噪比,如果不考虑退相干的话,我们甚至能无穷精确地知道塌缩后的量子态!
QND测量最早是由Braginsky等人在上世纪80年代提出的,研究的动机就是要解决引力波测量问题。前面已经提到,引力波测量要求的精度达到了原子核直径的尺度,此时量子效应必须考虑,而我们必须通过大量的反复测量才能累积到足够精确的数据,如果每次测量之间存在量子涨落,测量精度就无法通过累积来提升。
假如我们有一个测量装置,它对量子系统的作用可以用一个算符来表示,测量过程会导致系统向测量算符的某一个本征态塌缩。这里存在一个特殊情况:测量算符与系统哈密顿量及相互作用哈密顿量均对易。由于对易的算符具有相同的本征态,因此这种情况下我们可以确定,系统塌缩之后的状态
(测量算符的本征态)
将会是某一个“能量本征态”
(系统哈密顿量的本征态)
。而能量本征态又被称为“定态”——它只有平庸的相位演化,此时系统将保持在这个状态
(除非受到其他干扰,这里先假定没有)
,再次测量时,系统将以“1”的概率投影到自身,因此会给出与第一次测量相同的结果,以此类推,后续的N次测量都将给出相同结果,搞定!
接下来的问题是:如何构造这样一种
(QND)
测量呢?找不到现实存在的QND测量手段的话,理论就只是空架子了。据说早年在笔记中,朗道就思考过这样的问题,最后他在笔记中写道:“遗憾的是,这样的哈密顿量是不存在的... ...”白高兴一场!朗道毕竟是一个纯粹的理论物理学家,从严格意义上来讲,这种测量确实是不存在的。但物理学的精髓在于,我们可以近似!下面就讲一个这样的经典例子。
假如有一个原子,我们只关注它其中的某两个特定能级*,然后将这个原子放入一个谐振腔
(一个理想的简谐振子)
中。谐振腔中的电磁场与原子会发生极为微弱的相互作用,因此整个系统的哈密顿量将包含三部分:原子的、谐振腔的和相互作用项。由于相互作用很弱,我们可以把它当作一个微扰并做一系列近似,包括:
-
只考虑偶极相互作用,不考虑四极或更高阶的相互作用;
-
-
最后,再考虑原子频率和谐振腔频率相差很远的情况,即大失谐近似。
这样一来,我们就可以大刀阔斧地丢掉一大堆的项,最后保留下来的,就是经典的J-C哈密顿量。
*注释:
原子中能级极为复杂,且如果考虑完全的系统的
话,能级数量是无穷多的,为了简化问题,现在我们只考虑其中两个特定能级,也就是哈密顿量的一个小小的子空间。
这样做不会带来什么问题,因为其他能级基本都是冻结的。
原子-谐振腔耦合组成的腔量子电动力学系统示意图,及J-C哈密顿量形式(大失谐情况下)。
这个哈密顿量已经包含很多信息:
-
首先由于相互作用的存在,即便谐振腔中没有光子
(真空态)
,原子的能级也将发生微小的位移,这就是“兰姆位移”。
-
其次,谐振腔中有光子的话,原子能级的位移量会随着光子数增加而线性增加,这就是“AC-Stark效应”;反过来,原子上有没有激发,对谐振腔频率也会发生不同的影响,导致谐振腔频率发生位移。
-
最后,相互作用项与原子哈密顿量、谐振腔哈密顿量均对易。
看到吗?这不就是QND测量所要求的哈密顿量吗?如果把谐振腔当成是原子能态的探测器,我们就能够通过观察谐振腔频率的位移来判断原子处于哪个能量本征态了。我们将这样的一个系统称为“
腔量子电动力学
(Cavity QED)
系统”,2012年的诺贝尔奖就颁发给了在这方面有突出贡献的两位物理学家,Serge Haroche
(法国)
和 David J. Wineland
(美国)
。
好了,哈密顿量也找到了,接下来就看物理学家如何去实现了。最早在自然原子和谐振腔上做这个实验是极为困难的,因为第一,原子并不老实,要想让原子呆在谐振腔中间不动简直比结界兽关哪吒还难;第二,自然原子与光场的相互作用实在太弱,只有通过谐振腔将光子约束起来,让光子在其中来回反射无数次,才有可能发生可观测的相互作用,这就要求有极高品质因数的谐振腔。到这里我们就了解为什么这项工作能拿诺奖了,挑战性实在是大。
不过,如果我们换成别的体系,情况就大不相同了,比如
超导量子比特
。超导量子比特往往也被称之为“人工原子”,因为它也具有像原子那样的非线性能级系统,不同的是它所处的频率范围要低得多,大约在微波到毫米波范围。
超导量子比特中的量子态是“宏观量子态”,即大量微观粒子
(这里是电子)
的集体行为模式,这些微观粒子就像阅兵式上的方阵一样,数量庞大且行为整齐划一,这种集团军与外界电磁场发生相互作用的能力就比自然原子单兵作战或小队人马强得多了。人工原子还有一个优势,就是它们本身是通过微加工技术“刻”在芯片上的,所以天然就是固定不动的——想让它动才难呢!
这两个优势一下解决了自然原子腔量子电动力学系统中的两大难题,因此在人工原子中实现腔量子电动力学要容易得多。由于人工原子本质上是非线性的无损电路,因此这样的系统用另一个名称“
电路量子电动力学
(Circuit-QED)
系统
”加以区分。
一个电路量子电动力学系统示意图,蓝色部分是一个传输线谐振腔,绿色部分就是一个“人工原子”。
Circuit-QED系统的这些特性,使得它成为目前量子计算中最流行的读出方式。如果能进一步解决Circuit-QED测量的“单发性”,也就是只需要一次测量就能准确知道量子态投影到哪个本征态,这就是一个完美的量子测量方案。好啦,到这里我总算是拉回到了参量放大器,是的,这时候就需要参量放大器出场了。
前面讲到理想的约瑟夫森参量放大器
(JPA)
具有单光子水平的噪声性能,用它来做量子信号的第一级放大器,就能够将整个放大系统的总噪声压制到单光子水平,从而能够实现单发的QND测量。随着近十几年量子计算技术的飞速发展,参量放大技术甚至成为从物理比特向逻辑比特进步的关键技术。这就是JPA第三春到来的契机。
前面讲到上世纪80年代研究JPA的时候遇到莫名的噪声问题,实际上是因为约瑟夫森结参数不稳定造成的,经过三十来年的发展,目前在结制备材料和工艺上已经有了大幅进步,大量的实验总结出了什么材料最稳定,怎样做绝缘层最好,怎么控制结参数等等,做出来的JPA性能自然就优良得多。现在采用最多的超导材料是铝和铌,你没看错,铝,这种日常生活中最常见最普通的金属材料,也是做JPA乃至超导量子比特最优良的材料之一。
近十余年时间,JPA经历了快速的发展,同时还产生了类似原理的其他形态,比如行波参量放大器
(Traveling Wave Parametric Amplifier)
、约瑟夫森参量转换器
(Josephson Parametric Converter,JPC)
、阻抗匹配参量放大器
(Impedance Transformed Parametric Amplifier,IMPA)
等等。这些新型的参量放大器,在保持低噪声的情况下,进一步提升了带宽、动态范围等其他指标,以适应量子计算技术的发展需要。谷歌最近实现“量子霸权”,其中的测量技术依靠的就是IMPA。在下一步的量子纠错实验中,参量放大更是关键,我们仍需要进一步设法改进参量放大器的综合性能。
中科院物理所制备的参量放大器
有意思的是,暗物质探测,这个与量子计算八竿子打不着的研究项目,很快就盯上了参量放大器——当然是因为它太合适啦!在没有好用的JPA之前,暗物质探测项目要么在更低的频率采用超导量子干涉仪
(SQUID)
来测量,要么在更高的频率下利用对撞机来分析。然而,根据理论预言,当暗物质的一种候选粒子,也就是轴子的能量在10GHz左右时,其丰度与现有标准宇宙模型的观测数据吻合。对于这个频率的量子测量,JPA无疑是最佳的候选者,几乎没有之一。
JPA的工作条件非常苛刻,要求100mK以下的极低温,以及极为干净的电磁场环境,这限制了它的应用场景。有人提出利用JPA来构建“量子雷达”,目前来看还不靠谱。即便如此,仅量子计算这一个应用场景,就已经能够让JPA光芒四射了,我相信在未来朝更为极端的未知领域探索的过程中,JPA应该还能找到更多的应用场景。如果能够让大家记住这个不起眼却了不起的东西,此文的目的也就达到了,再见!