专栏名称: 机器之心
专业的人工智能媒体和产业服务平台
目录
相关文章推荐
51好读  ›  专栏  ›  机器之心

深度 | Yoshua Bengio AIWTB大会解读深度生成模型:让机器具备无监督学习能力

机器之心  · 公众号  · AI  · 2017-05-04 13:17

正文

请到「今天看啥」查看全文



Bengio 演讲的视频:




以下为该演讲的内容详情整理:



演讲主题:深度生成模型。在这张幻灯片上,我们可以看到 Bengio 任职的多个机构,包括蒙特利尔学习算法研究所(MILA)、蒙特利尔大学、加拿大高等研究院(CIFAR)、IVADO。右下角可以看到他与另外两位学界领军人物 Ian Goodfellow 和 Aaron Courville 合著的新书《Deep Learning》,目前该书的中文印前版已经出炉并和英文版一样开放了下载,可参阅文章《 资源 |《Deep Learning》中文印前版开放下载,让我们向译者致敬 》。



智能需要知识,所以机器若想智能,就需要学习。传统人工智能的失败在于很多知识是直觉式的,难以直接编程给计算机使用。我们的解决方案是使用机器学习来从数据和经历中获取知识。



过去几年,机器学习的进展让人惊叹,但人工智能还远不及人类智能的水平:


  • 目前取得了工业应用成功的人工智能大都基于监督学习;

  • 学习到的都是肤浅标签的线索,难以很好地泛化到训练环境之外,训练好的网络也很容易被欺骗(比如通过调整狗照片的像素,使其被误认为是一只鸵鸟)——通过选取简单的规则就能欺骗现在的模型;

  • 仍然不能在多种时间尺度上发现高层面的特征。


人类在无监督学习上的表现优于机器


  • 人类非常擅长无监督学习,比如,两岁小儿也知道直观的物理作用;

  • 婴儿可以得到近似的但足够可靠的物理模型,它们是怎么做到这一点的?注意他们不仅仅是观察世界,而且还会与世界进行交互。



用分布式表征对抗维度灾难


  • 为了解决维度灾难和很好地泛化到训练样本之外,深度学习利用了深度分布式表征

  • 分布式表征和深度利用了组合性,具有极大的优势



隐藏单元能发现有意义的概念








请到「今天看啥」查看全文