正文
还可以做什么呢?对于曲线交点的问题,用方程求解的办法有时候找不到答案,方程太复杂解不出 来,那么用泰勒级数的办法求这个交点,那么交点的精度要提高,相当于泰勒级数的保留项要增加,而这 个过程对应于牛顿--莱布尼茨的迭代过程,曲线交点的解在精度要求确定的情况下,有了被求出的可能。
看到了吧,泰勒技术用来求解高方程问题,是一种通用的方法,而不是像中学时代那样一种问题一 种解决办法,高等数学之所以成为"高等",就是它足够抽象,抽象到外延无穷大。
那么,更感兴趣的一个问题是,对于高阶的微分方程表达的问题,怎么求解呢?泰勒级数不行了, 就要到傅立叶级数-傅立叶变换-拉普拉斯变化。这几个工具广泛用于各个领域的数学分析,从信号与系统 到数理方程的求解。
中学数学和高等数学最大的区别是什么?中学数学研宄的是定解问题,例如根号4等于2。高等数 学研宄什么呢----它包含了不定解问题的求解,例如用一个有限小数位的实数来表示根号5的值。我们用 泰勒级数展开求出的根号5的近似值,无论保留多少位小数,它都严格不等于根号5,但是实际应用己经 足够了。不可解的问题,用高等数学的通解办法,可以求出一个有理数的近似解,它可以无限接近于上帝 给出的那个无理数的定解。通解可行性的前提是,我们要证明这种接近的收敛性,所以我们会看到高等数 学上册的课本里面,不厌其烦的,一章接一章,一遍又一遍的讲,一个函数,在某个开区间上,满足某个 条件,就能被证明收敛于某种求和式子。初等数学求的是定解,那么如果没有定解呢?高等数学可以求近 似解。牛顿莱布尼茨就是切线逼近法的始祖。例如求解一般的3次方程的根,求解公式可以是定解形
式。
但是问题是根号内的无理数仍然无法表示出来。
那么逼近法求一个数的N次方根就派上用场了。
f{m}=m(k+1) = m(K)+{A/m^2.(k)-m(k)}1/n.
n是方次,A被开方数。
例如,A=5, 5介于1的3次方至2的3次方之间。我们可以随意代入一个数m,例如2,那么:
第一步,2 + [5/ (2x2) -2]x1/3 = 1.7;
第二步,1.7+[5/(1.7x1.7)-1.7]x1/3 = 1.71;