正文
在中国,掌握着最大数据量的,莫过于BAT了,百度做不少开放平台。
主持人突然就顺势小马哥,你们腾讯有那么多社交数据,有没有可能把数据分享出来,让创业公司用?
马化腾依然回答得非常实在。他说,“这个问题我们在内部也有激烈的争论”,场景对于研究确实很重要,很多研究都需要实际运转数据的支持,不过,不是有一堆数据就能用,数据还需要清洗和标签化,才能让AI去学。这是一个非常庞大的工作量,甚至还是需要人去用很笨的方法打标签。运算能力对人工智能也很重要,需要用云的资源,所以腾讯也在做云。
更紧缺的,就是人才了,他说,一年前腾讯也很缺人才,如今逐渐招募了不少。为了招贤纳士,腾讯还在西雅图也设立了一个实验室,“因为很多微软的人都不愿意离开西雅图,因为我们就在旁边设了一个研究院”。
设立了研究院之后,腾讯内部也在问各个业务线,数据能不能给研究院做研究用。
但是,其实业务部门本身,也希望能招人去处理和挖掘利用自己的数据,而不是全部分享给别人
。因此,即便单论公司内部,也会有这个问题。
第二个则是用户隐私问题,因为腾讯的社交数据涉及大量用户隐私,如何脱敏是个很关键的问题。
要清洗到什么地步才能用,还要看看。最后他总结,数据的标签化和清洗,业内也有很多人也都在努力,很多公司拿着一堆裸数据,也不知道怎么办,所以我们必须先把数据整理过才能用,他说这还是一个很长的过程。
附全程对话实录:
吴鹰:
先从马化腾开始。刚才朱民演讲中特别举了你们这个团队的例子,13个人真的是没有一个人是会下围棋的,腾讯有一个700多人、成立了大概一年多的人工智能团队,专门研究人工智能,他们在很短时间内聚集了很厉害的一些专家。
能不能跟我们大家分享一下腾讯为什么在人工智能上这么重视,还有你对人工智能的看法和行业的看法?
马化腾:
其实李彦宏是人工智能走得更前了,对腾讯来说,我们还是落后不少,只是去年刚开始成立的部门。
当然在我们所有BG内部结合它的业务形态都有在落地,像我们微信里面,超过上百亿条消息,包括我们图片、特别是做社交网络,里面有人脸数据图片绝对是天文数字,每天高达上十亿张有人脸照片。
这方面的技术研究在各个BG有相当长时间研究,包括后台数据分析、广告匹配都用了人工智能技术,只是大家感受不到。因为他在后端。我们在前端也希望做出一些产品,刚好一年前Alpha Go它的paper出来,通过人机对战让全世界对人工智能认知到了一个新的高潮,我们团队本着练兵的心态也做了尝试。
谷歌收购了deepmind团队发表的论文,原来做计算机围棋的团队都纷纷采用深度学习方法来融入原有的似乎已经走进瓶颈的计算机围棋软件开发中,大家不约而同在这一年中起步。
我们内部团队有三个团队也在做,只是分在不同部门。这个部门刚好是它能够突破这个瓶颈,也动用了公司相当的大的后端的计算机资源,更大的特点是它和Alpha Go不同的是我们的决议AI的成长,全程得到了国家级围棋世界冠军从一开始的陪练,然后找出它为什么不同。我们十几位研发人员不懂围棋的,一开始连黑先下还是白先下的规则都不懂,我们从计算机原理、工程实现以及结合中国包括很多的专家来去训练。
我们觉得这算是小小的成功吧,但是也不能过于欣喜,毕竟是站在前人肩膀上,因为你没有发布这个paper,我们也不可能做出来,但是也不能说这是毫无疑义的事情。
这里面给我们最大的思考是,过去我们对AI很多是从一些规则、从简单的训练得出来的能够改善我们计算处理的这样一种能力,最终我们发现其实还有一个更恐怖、更深层的意义在于他能够在计算机的后台能够用云计算、大数据方式能够高速的自学习,能够自己跟自己对奕。
所以AlphaGo出来后,它的下一代master,经历了数十亿盘自我对弈,已经超越过去所有人类交战的盘数,然后它自己寻找规律,找到的已经远远超过人类过去在围棋领域认知的范围,是极大的扩展,这是给我们一个很大的启示。
在很多的领域——围棋以外的领域,不管是医疗(刚才讲的病理的检测),以后的金融,现实中的每个行业,如果能用计算机后台做出一个模拟器,能够让它充分尝试,就像开车一样,你可能不用教自动驾驶怎么开车,就模拟一个现实环境,给它一个规则,让它驾驶,它去撞,有各种反馈,自然会琢磨出一套理论和经验,这是给我们带来巨大思考。在很多领域如果能做出模拟器,定义出很多参数,自己学习,他能找到规律可能远超我们现在想象的。这是我们最大的启示。
吴鹰:
谢谢Pony。沈向洋先生作为微软人工智能事业部的负责人,你讲讲为什么人工智能这几年能有突破性发展,
能不能预测一下最可能在哪些领域具有颠覆性的应用出现?
沈向洋:
谢谢吴鹰。我每次听完马云讲话以后都没有话可以讲,马云基本上把大家想讲的都已经讲完了。
我从研究生开始学习人工智能,也有20、30年时间了。现在看到人工智能如火如荼,非常激动。因为我们90年代中毕业的时候出来的时候工作都找不到,现在大家恨不得见到一个懂人工智能都投钱。
人工智能经历了多少个冬天,之所以今天有这样的发展机会,主要还是因为三个方面原因,第一件事情,是因为互联网的出现,互联网+物联网提供了更多的数据。第二件事,强大的运算能力。摩尔定律到现在,大家觉得应该会死掉,但是还没有死掉,还有更多新的计算方法。第三,过去五六年深度学习突然突破,包括腾讯研发领域充分运用到深度学习,令到大家突然看到很多不能解的问题现在可以解掉。
从人工智能基本和研究方向来讲,还是两个不同非常不一样的阶段。一个是人类感知这件事情上,我们讲人工智能,原来对人工智能的定义就是跟人类智能相比较。人类的智能体现在哪?主要是两方面,一个是感知方面、一个是认知方面。感知方面,刚才我提到这几个原因,所以在接下来5-10年进展会非常快。具体表现在计算机语音和计算机视觉发展,我觉得AI会超过人。很多人会同意我这个说法。第二方面问题大家今天还没有搞的很清楚的地方是人工智能的认知方面,包括自然语言,包括知识的获取、包括你对一般的情况下这种解决的方法这样的思考,包括情感,这些东西今天我们还都是不知道。
您刚才提到现在人工智能给大家创造了一些什么样的机会,从微软公司来讲,我们的研判觉得短期之内是有非常非常大的商机,你看到底有那些行业已经相对而言有相当大量的数据,而且同时在这个行业里面从事人员是不高兴的,那你就有商机了。
如果这样看的话,到今天来讲,几乎所有的商业应用,从市场销售到HR部门招聘,到客户支持这方面,所有的都会被颠覆掉。我是觉得客服是接下来五年最多的AI应用的商机,我这样讲并不是说自动驾车不重要、围棋下棋不应该做研究。只是具体回答吴鹰的问题,从我们来讲最大的商机在哪,就是每一个商业应用都会被颠覆掉。
吴鹰:
大家注意沈博士说每一个商业应用都会被颠覆掉。这是非常震撼的一个结论。
郭为先生,你是神州数码的掌舵人,你们在智慧城市方面有很大的布局,很多人会认为你们好像跟人工智能不一定有那么大的关系。请你谈谈你对人工智能的看法。
郭为:
谢谢吴鹰。刚才沈向洋讲到今天人工智能有一个比较大的突破,实际上就是三点:一个是由于互联网出现,大数据出现。第二,计算能力高速度。第三,算法。