正文
Chainer 项目链接:https://github.com/chainer
大多数现有的深度学习框架都是基于「定义-运行(Define-and-Run)」方式的,即先定义一个网络,然后用户对其输入批量梯度下降。由于网络在前向/反向计算之前已经固定,所有逻辑必须作为数据嵌入到网络架构中。所以,这样的系统(例如 Caffe)中定义的网络架构遵循声明性方法;同时,我们也可以使用命令式语言(例如,Torch、基于 Theano 的框架和 TensorFlow)来产生这样的静态网络定义。
与以上方法相反,Chainer 使用「通过运行定义(Define-by-Run)」的方式,即通过即时正向运算定义网络。更准确地说,Chainer 存储计算历史,而不是编程逻辑。这一方式可以帮助我们充分发挥 Python 中编程逻辑的力量。例如,Chainer 不需要任何技巧就可以将条件和循环加入网络定义中。通过运行定义的方式就是 Chainer 的核心理念。由于逻辑更接近于网络处理过程,这种方式让编写多 GPU 并行运算的优化方法变得简单。
在 Chainer 2.0.0 测试版推出近三个月之后,该框架刚刚推出了 2.0.0 正式版,以下是我们对新版本主要更新内容的整理。
重要更新说明
-
CUDA 7.0 或更高
-
cuDNN 4.0 或更高