专栏名称: 机器之心
专业的人工智能媒体和产业服务平台
目录
相关文章推荐
51好读  ›  专栏  ›  机器之心

观点 | 运行机器学习项目,你需要避开这四个常见错误

机器之心  · 公众号  · AI  · 2017-04-12 14:16

正文

请到「今天看啥」查看全文


机器之心编译

参与:Ellen Han、微胖


作为机器学习和数据分析的专家,在与不同领域企业合作开发和实现机器学习项目方面,我们有着丰富经验,这些领域包括制造,电信,金融服务以及零售业。对机器学习项目中常犯的错误,我们了如指掌,这些错误不是只有初学者才会犯。


对于企业来说,为了专注真正问题以及可以带来投资回报率的解决方案,学会不做什么事关重要。利用我们自己以及其他人的样例,就会看到让我们付出惨痛代价但本可加以避免的错误。


以下就是机器学习过程中,公司容易犯下的四个典型错误。


测试错误


如何证明机器学习真有商业价值?或许唯一真实的办法就是用 A/B 测试来验证一个机器学习模型的效果。但是,很多公司犯了一个根本错误:在测试时,变量比模型还多。


A/B 测试中,『A』与 『B』 唯一的区别就是生成结果的模型。所有其他变量应该是一样的。


例如,测试通过短信进行产品推荐时,所有短信应该在同一天、同一时间里发出。这也是搞清楚不同模型效果的唯一办法。一个变量发生改变了,就没办法充分比较测试结果。比如,周六上午发出的推荐消息产生的效果会和周五晚上发出的效果不一样。







请到「今天看啥」查看全文