专栏名称: 雷峰网
中国智能硬件第一媒体
目录
相关文章推荐
新浪科技  ·  【#雷军辟谣YU7售价23.59万元#:不可 ... ·  10 小时前  
新浪科技  ·  【#新消费概念再度活跃##若羽臣涨停创历史新 ... ·  13 小时前  
新浪科技  ·  【#研究称每日2.5杯咖啡最佳##研究称咖啡 ... ·  12 小时前  
新浪科技  ·  【#52TOYS三年亏损近2亿# ... ·  17 小时前  
51好读  ›  专栏  ›  雷峰网

PK | 黄仁勋亲自撰文怼上 TPU:P40速度比你快 2 倍,带宽是你的 10 倍

雷峰网  · 公众号  · 科技媒体  · 2017-04-11 22:23

正文

请到「今天看啥」查看全文


不可思议的效果

以谷歌为例。谷歌在深度学习里突破性的工作引发了全球关注:Google Now 语音交互系统令人吃惊的精确性、AlphaGo在围棋领域历史性的胜利、谷歌翻译应用于100种语言。

深度学习已经达到了不可思议的效果。但是深度学习的方法,要求计算机在摩尔定律放缓的时代背景下,精确处理海量数据。深度学习是一种全新的计算模型,它也需要一种全新计算架构的诞生。

一段时间以来,这种 AI 计算模型都是运行于英伟达芯片之上。2010 年,研究员 Dan Ciresan 当时在瑞士 Juergen Schmidhuber 教授的 AI 实验室工作,他发现英伟达 GPU 芯片可以被用来训练深度神经网络,比 CPU 的速度快 50 倍。一年之后,Schmidhuber 教授的实验室又使用 GPU 开发了世界上首个纯深度神经网络,一举赢得国际手写识别和计算机视觉比赛的冠军。

接着,在 2012 年,多伦多大学的硕士生 Alex Krizhevsky 使用了两个 GPU,赢得了如今蜚声国际的 ImageNet 图像识别竞赛。(Schmidhuber教授曾经写过一篇文章,全面梳理了运行于GPU之上的深度学习对于当代计算机视觉的影响 http://people.idsia.ch/~juergen/computer-vision-contests-won-by-gpu-cnns.html)

深度学习优化

全球的 AI 研究员都发现了,英伟达为计算机图形和超级计算应用所设计的 GPU 加速计算模型,是深度学习的理想之选。深度学习应用,比如 3D 图形,医疗成像、分子动力学、量子化学和气象模拟等,都是一种线性代数算法,需要进行大规模并行张量或多维向量计算。诞生于 2009 年的英伟达 Kepler GPU 架构,虽然帮助唤醒了世界在深度学习中使用 GPU 加速计算,但其诞生之初并非为深度学习量身定制的。

所以,我们必须开发出新一代GPU架构,首先是 Maxwell,接着是 Pascal,这两种架构都对深度学习进行了特定的优化。在Kepler Tesla K80 之后四年,基于 Pascal 架构的 Tesla P40 推理加速器诞生了,它的推理性能是前者的 26 倍,远远超过了摩尔定律的预期。

在这一时期,谷歌也设计了一款定制化的加速器芯片,名为“张量处理单元”,即 TPU。具体针对数据推理,于 2015 年部署。

上周,谷歌团队发布了关于 TPU 优越性的一些信息,称 TPU 比 K80 的推理性能高出 13 倍。但是,谷歌并没有拿 TPU 与如今最新一代的 Pascal P40 做比较。

最新对比







请到「今天看啥」查看全文