正文
相比创业公司,BAT的最大优势是什么呢?第一,不缺数据;第二,为了构建自己的生态系统,未来通用技术一定全部是免费的;第三,虽然通用技术免费,但BAT有羊毛出在身上的猪机会。这是典型的互联网打法。
这里的猪是什么?猪就是云计算。例如百度的ABC策略,分别代表人工智能(AI)、大数据(Big Data)和云计算(Cloud Computing)。AI我可以不赚钱,开放给大家,那么大家想享受我的服务,就来买我的云吧。
而对于创业企业来说,只做图像识别、语音识别、语义理解、机器翻译这些通用技术,指望通过SDK卖钱,未来路会越来越窄,特别是BAT都免费的压力下。
所以从这个角度讲,创业公司做下面两层风险比较大。
我认为创业公司的机会在最上层,就是拿着下两层的成果去服务垂直行业,也就是我们所谓的人工智能+。
深入垂直行业的人工智能+,又可细分为两类情况:即“人工智能+行业”和“行业+人工智能”,他们间有明显的区别。
“AI+行业”
简单讲就是在AI技术成熟之前,这个行业、产品从未存在过。比如自动驾驶,亚马逊的Echo智能音箱、苹果的Siri语音助手。在人工智能技术未突破前,不存在这样的产品。因为AI,创造出了一条全新的产业链。
“行业+AI”
就是行
业本身一直存在,
产业链条成熟,只是以前完全靠人工,效率比较低,现在加入AI元素后,
使得行业效率有了明显提高。比如安防、医疗等领域。
客观讲,这两个类别都有创业机会。但“AI+行业”,因为是一条新的产业链,创业公司与互联网巨头实际是处在同一起跑线上。巨头们坐拥数据优势。所以从这个角度,“行业+AI”相对对创业公司更为友好,也更容易构建出壁垒。
我认为,
未来行业壁垒才是人工智能创业最大的护城河。
因为每个行业都有垂直纵深, 尽管BAT技术好一点、并不关键。拿医疗+AI举例,什么最重要?大量准确的被医生标注过的数据最重要。没有数据,再天才的科学家也无用武之地。
但在国内,这个医疗数据拿出来非常困难。所以BAT做医疗一点优势都没有,因为他们要把这些数据,从各医院、各科室搞出来也很累。相反,如果一个创业者在医疗行业耕耘很多年,也许拿起数据来比大公司更容易。
这要求创始团队的合伙人中,必须有懂行业、有行业资源的人才。这与互联网+一样,一旦细分到具体行业,并不是说你百度、腾讯有资金、有流量,投入人才就什么都能做,比拼的还有行业资源和人脉。
之所以跟大家聊这个话题,是因为前一段去百度大学跟大家交流,他们提到百度人工智能在无人车和DuerOS的应用。同时又问我,人脸识别在国内安防领域的应用价值非常大。像海康威视有近3000亿人民币的市值,每年光净利润就有近百亿。百度在AI方面是不是该考虑进军这个领域。
我回答说千万别,因为安防是典型的、有巨大壁垒的“行业+AI”领域。
即使百度技术好,在人脸识别率方面比海康威视高一个百分点(实际不一定,海康背后有几百人的AI研发团队)。但这并不代表百度就能替代海康。因为安防是“非关键性应用”(non-mission-critical),100个犯人我识别了95个,你比我多识别了一个做到了96个,其实没那么重要。
而反过来,海康对比百度有什么优势?首先海康是做摄像头的,用自己的硬件跑自己的算法,是很自然的事儿。就像苹果手机,软硬一体体验更好。其次,海康做了这么多年的安防,积累了非常多的数据,人脸的数据、环境的数据……在安防领域有数据优势。最后,海康给公安系统做了很多类似警务通、基站信息采集、视图档案管理等SaaS平台的东西,以及警用云系统。我们可以认为公安系统的IT化,其中有一部分就是海康威视参与的。
这些东西可能不赚钱,但却为海康构建了壁垒。因为底层的基础设施都是我建的,那前端的东西就只能用我的(我可以有100个理由,说竞品与我不兼容)。而且海康做了这么长时间,积累了大量的客户资源,特别是政府公安局的资源,开拓这些资源非常需要时间。
这些就是所谓的行业纵深。所以即使对BAT而言,想进入“行业+AI”领域,选择垂直赛道时,同样要非常谨慎。
在巨大的行业壁垒面前,真不是说我的算法比你好一些,市场就是我的,只有技术优势仍然差的很远。
回归 “AI+行业”和“行业+AI”,通常来讲前者的行业纵深会比较浅,而后者则有巨大的行业壁垒。而行业壁垒,则是创业公司最大的护城河,也是抵挡BAT的关键。