专栏名称: 36大数据
关注大数据和互联网趋势,最大,最权威,最干货的大数据微信号(dashuju36)。大数据第一科技媒体。不发软文,只做知识分享。
目录
相关文章推荐
51好读  ›  专栏  ›  36大数据

【入门】数据分析六部曲

36大数据  · 公众号  · 大数据  · 2017-12-07 07:50

正文

请到「今天看啥」查看全文


数据收集


一般数据来源于四种方式:数据库、第三方数据统计工具、专业的调研机构的统计年鉴或报告(如艾瑞资讯)、市场调查。


对于数据的收集需要预先做埋点,在发布前一定要经过谨慎的校验和测试,因为一旦版本发布出去而数据采集出了问题,就获取不到所需要的数据,影响分析。


3
数据处理


数据处理主要包括数据清洗、数据转化、数据提取、数据计算等处理方法,将各种原始数据加工成为产品经理需要的直观的可看数据。


4
数据分析


数据分析是用适当的分析方法及工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论的过程。


常用的数据分析工具,掌握Excel的数据透视表,就能解决大多数的问题。需要的话,可以再有针对性的学习SPSS、SAS等。


数据挖掘是一种高级的数据分析方法,侧重解决四类数据分析问题:分类、聚类、关联和预测,重点在寻找模式与规律。


5
数据展现


一般情况下,数据是通过表格和图形的方式来呈现的。常用的数据图表包括饼图、柱形图、条形图、折线图、气泡图、散点图、雷达图等。进一步加工整理变成我们需要的图形,如金字塔图、矩阵图、漏斗图、帕雷托图等。


一般能用图说明问题的就不用表格,能用表说明问题的就不用文字。


图表制作的五个步骤:


  1. 确定要表达主题

  2. 确定哪种图表最适合

  3. 选择数据制作图表

  4. 检查是否真实反映数据

  5. 检查是否表达观点


常用图表类型和作用:



图片来自于网易云课堂《谁说菜鸟不会数据分析》


6
报告撰写


一份好的数据分析报告,首先需要有一个好的分析框架,并且图文并茂,层次明晰,能够让阅读者一目了然。结构清晰、主次分明可以使阅读者正确理解报告内容;图文并茂,可以令数据更加生动活泼,提高视觉冲击力,有助于阅读者更形象、直观地看清楚问题和结论,从而产生思考。


好的数据分析报告需要有明确的结论、建议或解决方案。


数据分析的四大误区


1.分析目的不明确,为了分析而分析;


2.缺乏行业、公司业务认知,分析结果偏离实际。数据必须和业务结合才有意义。摸清楚所在产业链的整个结构,对行业的上游和下游的经营情况有大致的了解,再根据业务当前的需要,制定发展计划,归类出需要整理的数据。同时,熟悉业务才能看到数据背后隐藏的信息;







请到「今天看啥」查看全文