专栏名称: InfoQ
有内容的技术社区媒体。
目录
51好读  ›  专栏  ›  InfoQ

最全大数据工具盘点,Google Trends 揭示了你应该学习这些!

InfoQ  · 公众号  · 科技媒体  · 2017-02-08 08:00

正文

请到「今天看啥」查看全文


数据搜集
Logstash

一个应用程序日志、事件的传输、处理、管理和搜索的平台。可以用它来统一对应用程序日志进行收集管理,提供了Web接口用于查询和统计。

Scribe

Scribe是Facebook开源的日志收集系统,它能够从各种日志源上收集日志,存储到一个中央存储系统(可以是NFS,分布式文件系统等)上,以便于进行集中统计分析处理。

Flume

Cloudera提供的一个高可用的、高可靠的、分布式的海量日志采集、聚合和传输的系统。Flume支持在日志系统中定制各类数据发送方,用于收集数据。同时,Flume支持对数据进行简单处理,并写入各种数据接受方(可定制)。

消息系统
RabbitMQ

一个受欢迎的消息代理系统,通常用于应用程序之间或者程序的不同组件之间通过消息来进行集成。RabbitMQ提供可靠的应用消息发送、易于使用、支持所有主流操作系统、支持大量开发者平台。

ActiveMQ

Apache出品,号称“最流行的,最强大”的开源消息集成模式服务器。ActiveMQ特点是速度快,支持多种跨语言的客户端和协议,其企业集成模式和许多先进的功能易于使用,是一个完全支持JMS1.1和J2EE 1.4规范的JMS Provider实现。

Kafka

一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模网站中的所有动作流数据,目前已成为大数据系统在异步和分布式消息之间的最佳选择。

数据处理
Spark

一个高速、通用大数据计算处理引擎。拥有Hadoop MapReduce所具有的优点,但不同的是Job的中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。它可以与Hadoop和Apache Mesos一起使用,也可以独立使用。

Kinesis

可以构建用于处理或分析流数据的自定义应用程序,来满足特定需求。Amazon Kinesis Streams 每小时可从数十万种来源中连续捕获和存储数TB数据,如网站点击流、财务交易、社交媒体源、IT日志和定位追踪事件。

Hadoop

一个开源框架,适合运行在通用硬件,支持用简单程序模型分布式处理跨集群大数据集,支持从单一服务器到上千服务器的水平scale up。Apache的Hadoop项目已几乎与大数据划上了等号,它不断壮大起来,已成为一个完整的生态系统,拥有众多开源工具面向高度扩展的分布式计算。高效、可靠、可伸缩,能够为你的数据存储项目提供所需的YARN、HDFS和基础架构,并且运行主要的大数据服务和应用程序。

Spark Streaming

实现微批处理,目标是很方便的建立可扩展、容错的流应用,支持Java、Scala和Python,和Spark无缝集成。Spark Streaming可以读取数据HDFS,Flume,Kafka,Twitter和ZeroMQ,也可以读取自定义数据。

Trident

是对Storm的更高一层的抽象,除了提供一套简单易用的流数据处理API之外,它以batch(一组tuples)为单位进行处理,这样一来,可以使得一些处理更简单和高效。

Flink

于今年跻身Apache顶级开源项目,与HDFS完全兼容。Flink提供了基于Java和Scala的API,是一个高效、分布式的通用大数据分析引擎。更主要的是,Flink支持增量迭代计算,使得系统可以快速地处理数据密集型、迭代的任务。

Samza

出自于LinkedIn,构建在Kafka之上的分布式流计算框架,是Apache顶级开源项目。可直接利用Kafka和Hadoop YARN提供容错、进程隔离以及安全、资源管理。

Storm

Storm是Twitter开源的一个类似于Hadoop的实时数据处理框架。编程模型简单,显著地降低了实时处理的难度,也是当下最人气的流计算框架之一。与其他计算框架相比,Storm最大的优点是毫秒级低延时。

Yahoo S4 (Simple Scalable Streaming System)

是一个分布式流计算平台,具备通用、分布式、可扩展的、容错、可插拔等特点,程序员可以很容易地开发处理连续无边界数据流(continuous unbounded streams of data)的应用。它的目标是填补复杂专有系统和面向批处理开源产品之间的空白,并提供高性能计算平台来解决并发处理系统的复杂度。

HaLoop

是一个Hadoop MapReduce框架的修改版本,其目标是为了高效支持 迭代,递归数据 分析任务,如PageRank,HITs,K-means,sssp等。

查询引擎






请到「今天看啥」查看全文