正文
可是,实验却告诉我们,光并不是粒子,而是波。假如你真的相信实验,真的相信光是波,这就意谓着真空不是什么都没有。因为波必须要由媒介来承载,波是媒介的振动。所以将真空想象为海洋会比较恰当,而我们就好像海洋里的鱼。由于我们生活在海洋里面,我们就自然不会感到水的存在。若果用这个海洋图像,就会容易明白光的波性。海洋里的水的振动会产生波,这就是光波了(见图10)。至于海洋里的气泡、鱼和其他的东西那就是物质。这种可以承载光波的媒介,我们称之为以太(ether)。引入以太这种媒介之后,我们得到一个理解光波很好的图像,一个完美的理论。
图10 海洋里的光波图像。
但是,光的故事并不如此简单。光波是一种有特殊内部结构的波。它其实并不能被看成是液体中的波。我们是如何发现光波的内部结构呢?有种特别的晶体,它们会有一种现象称为 “双折射" 。当你将晶体放在报纸上,你可以看见上面的字有双像的效果(见图11)。人们对于这种现象一度感到非常疑惑,百思不得其解。其实,在人们肯定光是波之前,牛顿曾试图用粒子理论来理解双折射现象。他假设有两种光粒子,所以它们有不同的折射。
图11 光的双折射或双像现象
我们也可以利用两种波来解释双折射现象。光不只是波,它还是很特别的波。由于波是一种振动,那么波的不同振动方向就代表不同的波。如图12所示,向右传播光有两种振动:上下振动和前后振动,人们对这 “两种不同的振动 ”或 “两种不同方向的振动”,以一个科学名词 -- 偏振来指称。双折射晶体对这两种偏振有不同的影响,导致其不同的速度。由于这两种偏振有不同的速度,它们的折射弯曲的程度亦不同。因此,双折射或双像揭示了光的另一种秘密:光不只是波,而是带有偏振的波。我们说有两种光,即有两种偏振方向的光。
图12 光波中的两种振动方向:垂直振动和水平振动。
此外,偏振也可以透过偏振分光镜来检测。天然的光包含两种方向的偏振。偏振分光镜只准许某一偏振的光穿过而阻挡其他方向的偏振的光。如图13所示,当带有随机偏振的天然光通过偏振分光镜,所通过的光线,只会在某一方向振动。如果你加第二块偏振分光镜并将其旋转90度,所有的光就会完全被阻挡。由于振动方向垂直于传播方向,因此,这种偏振就称为横向偏振。这种波就称为横波。LCD屏幕所发出的光也是偏振的。你透过偏振片来看LCD屏幕就能发现这一点。其实LCD正是利用光的偏振性质来调控明暗显示图像。
图13 利用偏振分光镜检测光的偏振性质的实验示意图。
图14 在液体里,粒子是随机分布的。
这种对光波有两种横向偏振的认识导致出如下一个结论。先前我们假设真空是可以承载光波的以太,而且想象以太就像海水一样。但现在我们发现以太不可能是液体。这是因为在液体里,粒子是随机分布的(见图15)。在液体里的波,是由压缩和解压缩引起。当你挤压它,它会具有较高密度;但当你解压它,它会有较低密度,这就产生了波。当你挤压或解压时,液体中粒子的振动的方向是与传播方向一样。这种偏振叫纵向偏振,其对应的波叫纵波。要产生横波,我们须对媒介进行剪切变形。但这很难在液体里实行。因为液体中的粒子是随机分布,当你剪切变形随机分布的粒子,粒子仍然是随机分布,没有任何改变。所以,在液体里进行剪切变形,将不会引发任何变化。所以,液体只有纵波,没有横波(见图15)。
这也是为什么液体没有形状的原因。因此,以太不可能是液体。把以太比喻为液体的海洋是不准确的。
既然排除了以太是液体的说法,那么认为以太是固体 (solid) 会不会行得通呢?在固体里,粒子排列成有规律的列阵。当你剪切变形粒子列阵,你便会得到不同的形态。这就导致了在固体中,有一种波拥有与传播方向垂直的振动,就是前面提及的横波。这也是为什么固体有形状的原因。所以,以太有可能是固体。但是从另一角度看,固体是可以挤压或解压的。固体不但有横波,还有纵波(见图16)。可是,光波只有两种横模,并没有纵模。因此,以太是固体的说法也不能成立。
只有两种横模,而没有纵模,光波不是普通的波。它是非常特别的波。由于这些特别的性质,只有纵波的液体和同时拥有纵波和横波的固体,都不能成为可以承载光波的媒介。这使我们陷入迷惘:我们知道光是波,但究竟什么媒介里的波才是光波呢?它不是液体里的波,也不是固体里的波。我们被困住了!其实几十年中,人们还尝试推测了很多其他的东西,但没有一样物质可以支撑这种带有两种横向偏振的光波。所以,我们完全被困住了,彷佛完全无能为力了!很多人都放弃了以太的构思,恐怕是因为不知道什么媒介能承载光波,故而认为这种媒介是不存在。但亦有人锲而不舍,坚持发问,最后终于发现可以承载只有两种横模的光波的媒介。在科学界里,这是屡见不鲜的事,然而转折点往往来自一些意想不到的地方。山重水复疑无路,柳暗花明又一村。光的故事亦不例外。
要发现可以承载只有两种横摸的光波的媒介,我们要对光的内部结构有更深入的了解。这段新的故事,始于一个意想不到的地方。在知道光是波之前很多年,人们已发现了一些具有磁性特质的物质,它们能指向北方,这就是指南针(见图17左图)。人们可以定量地研究这些磁性物质,人们发现,一个磁石会作用另一磁石上。所以,磁性物质会互相作用 。在图17右图中, 可通过微小磁性物质是如何分布在磁石周围,来
清楚看到这种作用。假如你将一些铁粉溅散在磁石的周围,你便会得到这些线。然而,如何理解磁性物质间的相互作用呢?虽然磁石之间没有任何东西,但它们仍然互相作用,像有一种神秘的超距力量,这使科学家们感到十分好奇。有些人如法拉第,他不相信会有超距作用,他认为对象必须触碰才能互相作用。但明显地,那两块磁石并没有触碰。所以,法拉第便认为磁石的周围,可能有一些力的场,这些力场触碰另一块磁石。虽然我们看不见力场 ,但它是存在的。透过接触磁石的力场,磁石之间便会互相作用(见图18)。
图17 左图为司南—指南针;右图为磁铁及其周围的铁粉。