正文
过去,即使每天花10个小时在自己的手机上,使用着各种信息时代的便利,我们依然认为,"真正的人工智能"还停留在科幻电影与遥远的未来。
但现在,各种黑科技的井喷,正在告诉我们,从弱人工智能到强人工智能之间,或许并没有一道森严的壁垒。在一些领域,人工智能将达到,甚至已经悄然越过那条看不见的分界线。
更重要的是,要对我们的产业、经济乃至社会组织形成颠覆式的影响,其实远远不需要真正的强人工智能。
即使,我们离想象中的人工智能仍有距离,但它对人类社会产生的冲击,已经全面开始。
2
2015年3月,谷歌人工智能AlphaGo以4比1战绩,击败韩国围棋选手李世石,是刺激全球进入人工智能竞速狂潮的标志事件。
人工智能概念由来已久,但最近几年,这个产业才迎来井喷式的大繁荣。这段时间的发展速度与成就取得,远超过去几十年的累积。
这一轮的人工智能大发展,始于2006年,Hinton等人提出的深度学习概念。
在此之前,开发者们更希望直接编写出一套足够智能的程序,但无论如何天才的开发者,编写出的程度都与外界的期望天差地别。
而深度学习则放弃了这个不切实际的想法,不再是程序员直接完成所有的代码,而是放手让人工智能自己演化成长。
通俗来讲,它通过对人和动物大脑的仿生,将计算代码模拟为简单的、相互连接的神经元,并通过修改单元之间的连接,来不断进行经验积累,让它形成自己的逻辑推理,自我完善发展。
这就像人的成长,刚出生时只有最基础的本能,只有经过慢慢长大,不断学习,才能在不同的领域绽放光彩。成长环境的不同,学习方向的不同,都会影响未来的前进方向与成就高度。
这个概念的另一个通俗叫法,是"机器学习"。这个词显然更直接,它的目的就是要让机器学习,自己进化。
比如,科学家们有过这样的实验:他们制造了一个机械海星,只为它输入了控制自身部件的简短代码,以及让它"学会自己走路"的目标,但它通过深度学习,只用了很短时间,就从只能在原地蠕动,到学会了流畅地行走,甚至当科学家截去一部分"肢体",它依然能顽强地继续前进。
这并非科学幻想,而是2015年初就已完成的真实实验。
而现在,这种人工智能的深度学习,正在无数个不同的领域展开实验,不断累积通往下一次进化的经验与数据。
就像本文开始列举的那些黑科技,都是有人工智能和深度学习参与的应用实例。
3
深度学习的原理并不复杂,但为何直到近年方才盛行?
关键原因在于,
海量数据的模型训练,是深度学习的核心过程,人工智能赖以提升智能水平。
因此,它的发展需要三个核心推动力,缺一不可。
一、海量的数据。
如果以网络游戏来比喻,数据就是人工智能赖以升级的经验包。如果没有足够多的数据,深度学习将无从谈起。